Anaconda如何在Python项目中使用
更新:HHH   时间:2023-1-7


本篇文章为大家展示了Anaconda如何在Python项目中使用,内容简明扼要并且容易理解,绝对能使你眼前一亮,通过这篇文章的详细介绍希望你能有所收获。

Anaconda的安装

不同的操作系统都是直接的在官网或天达云中下载安装包进行下载,选择你最经常使用的Python版本进行安装,下载完之后,尽量的按照anaconda默认的行为安装,现在的版本不会将bin目录加入到环境变量path中去。

但是安装完之后可以使用自带的命令行界面进行操作

安装成功就可以通过:conda --version命令进行检验是否安装成功。 还可以通过python --version 命令查看发行版默认的Python版本。

在我安装的过程中碰到了一个错误 Failed to create menus

说是不能够创建菜单,这里我试了很多的解决办法,最终是通过将所有的java环境变量删除之后就可以安装成功了。

一般这种错误的解决办法有:

安装路径里不要包含英文以外的语言,即安装路径全部用英文命名;进入 cmd,找到你安装的位置(我的是D:\anacoda),然后执行 python .\Libs_nsis.py mkmenus

如果这些方法还没有解决你的问题,可以看看这里:https://www.zhihu.com/question/42263480

注意:在以下的使用过程中你会发现使用conda下载包的速度非常的慢,因为使用的是国外的服务器,所以这里要设置为国内的镜像。使用下面的配置命令即可:

这里写图片描述
安装成功就可以通过:conda --version命令进行检验是否安装成功。 还可以通过python --version 命令查看发行版默认的Python版本。
在我安装的过程中碰到了一个错误 Failed to create menus

这里写图片描述

说是不能够创建菜单,这里我试了很多的解决办法,最终是通过将所有的java环境变量删除之后就可以安装成功了。

一般这种错误的解决办法有:
安装路径里不要包含英文以外的语言,即安装路径全部用英文命名;进入 cmd,找到你安装的位置(我的是D:\anacoda),然后执行 python .\Libs_nsis.py mkmenus
如果这些方法还没有解决你的问题,可以看看这里:https://www.zhihu.com/question/42263480

注意:在以下的使用过程中你会发现使用conda下载包的速度非常的慢,因为使用的是国外的服务器,所以这里要设置为国内的镜像。使用下面的配置命令即可:

除了使用命令行,你可以使用图形界面Navigator管理你的python版本,root 是下载时候选择的python版本,同时你可以选择右侧的搜索框选择未下载的包

点击下面的Create可以选择下载python 版本,要想切换python版本直接点击就可以了

conda的常用命令操作

conda管理工具可以同时安装不同版本的python,并且自由的进行切换,经常使用的有以下的命令:

# 创建一个名为python34的环境,指定Python版本是3.4(不用管是3.4.x,conda会为我们自动寻找3.4.x中的最新版本)
conda create --name python34 python=3.4

# 安装好后,使用activate激活某个环境
activate python34 # for Windows
source activate python34 # for Linux & Mac
# 激活后,会发现terminal输入的地方多了python34的字样,实际上,此时系统做的事情就是把默认2.7环境从PATH中去除,再把3.4对应的命令加入PATH

# 此时,再次输入
python --version
# 可以得到`Python 3.4.5 :: Anaconda 4.1.1 (64-bit)`,即系统已经切换到了3.4的环境

# 如果想返回默认的python 2.7环境,运行
deactivate python34 # for Windows
source deactivate python34 # for Linux & Mac

# 删除一个已有的环境
conda remove --name python34 --all

使用conda管理包

# 安装scipy
conda install scipy
# conda会从从远程搜索scipy的相关信息和依赖项目,对于python 3.4,conda会同时安装numpy和mkl(运算加速的库)

# 查看已经安装的packages
conda list
# 最新版的conda是从site-packages文件夹中搜索已经安装的包,不依赖于pip,因此可以显示出通过各种方式安装的包

# 查看当前环境下已安装的包
conda list

# 查看某个指定环境的已安装包
conda list -n python34

# 查找package信息
conda search numpy

# 安装package
conda install -n python34 numpy
# 如果不用-n指定环境名称,则被安装在当前活跃环境
# 也可以通过-c指定通过某个channel安装

# 更新package
conda update -n python34 numpy

# 删除package
conda remove -n python34 numpy

# 更新conda,保持conda最新
conda update conda

# 更新anaconda
conda update anaconda

# 更新python
conda update python
# 假设当前环境是python 3.4, conda会将python升级为3.4.x系列的当前最新版本

pycharm中使用anaconda

这里讲下在pycharm上anaconda的配置:

在Pycharm的Files>>settings>>Project Interpreter>>Add local 里面添加Anaconda python.exe. 应用之后就可以调用各种Anaconda的库啦,如果下载了其他版本的python,将envs中的python.exe也添加到Project Interpreter 中,在需要的时候进行切换就可以了

如下面的图片所示:

上述内容就是Anaconda如何在Python项目中使用,你们学到知识或技能了吗?如果还想学到更多技能或者丰富自己的知识储备,欢迎关注天达云行业资讯频道。

返回开发技术教程...