这篇文章将为大家详细讲解有关如何使用python实现微信跳一跳,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。
部分代码分享:
wechat_jump.py
from __future__ import print_function
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
import math
import time
import os
import cv2
import datetime
scale = 0.25
template = cv2.imread('character.png')
template = cv2.resize(template, (0, 0), fx=scale, fy=scale)
template_size = template.shape[:2]
def search(img):
result = cv2.matchTemplate(img, template, cv2.TM_SQDIFF)
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(result)
cv2.rectangle(img, (min_loc[0], min_loc[1]), (min_loc[0] + template_size[1], min_loc[1] + template_size[0]), (255, 0, 0), 4)
return img, min_loc[0] + template_size[1] / 2, min_loc[1] + template_size[0]
def pull_screenshot():
filename = datetime.datetime.now().strftime("%H%M%S") + '.png'
os.system('mv autojump.png {}'.format(filename))
os.system('adb shell screencap -p /sdcard/autojump.png')
os.system('adb pull /sdcard/autojump.png .')
def jump(distance):
press_time = distance * 1.35
press_time = int(press_time)
cmd = 'adb shell input swipe 320 410 320 410 ' + str(press_time)
print(cmd)
os.system(cmd)
def update_data():
global src_x, src_y
img = cv2.imread('autojump.png')
img = cv2.resize(img, (0, 0), fx=scale, fy=scale)
img, src_x, src_y = search(img)
return img
fig = plt.figure()
index = 0
# pull_screenshot()
img = update_data()
update = True
im = plt.imshow(img, animated=True)
def updatefig(*args):
global update
if update:
time.sleep(1)
pull_screenshot()
im.set_array(update_data())
update = False
return im,
def onClick(event):
global update
global src_x, src_y
dst_x, dst_y = event.xdata, event.ydata
distance = (dst_x - src_x)**2 + (dst_y - src_y)**2
distance = (distance ** 0.5) / scale
print('distance = ', distance)
jump(distance)
update = True
fig.canvas.mpl_connect('button_press_event', onClick)
ani = animation.FuncAnimation(fig, updatefig, interval=5, blit=True)
plt.show()
wechat_jump_auto.py
# coding: utf-8
import os
import sys
import subprocess
import shutil
import time
import math
from PIL import Image, ImageDraw
import random
import json
import re
# === 思路 ===
# 核心:每次落稳之后截图,根据截图算出棋子的坐标和下一个块顶面的中点坐标,
# 根据两个点的距离乘以一个时间系数获得长按的时间
# 识别棋子:靠棋子的颜色来识别位置,通过截图发现最下面一行大概是一条直线,就从上往下一行一行遍历,
# 比较颜色(颜色用了一个区间来比较)找到最下面的那一行的所有点,然后求个中点,
# 求好之后再让 Y 轴坐标减小棋子底盘的一半高度从而得到中心点的坐标
# 识别棋盘:靠底色和方块的色差来做,从分数之下的位置开始,一行一行扫描,由于圆形的块最顶上是一条线,
# 方形的上面大概是一个点,所以就用类似识别棋子的做法多识别了几个点求中点,
# 这时候得到了块中点的 X 轴坐标,这时候假设现在棋子在当前块的中心,
# 根据一个通过截图获取的固定的角度来推出中点的 Y 坐标
# 最后:根据两点的坐标算距离乘以系数来获取长按时间(似乎可以直接用 X 轴距离)
# TODO: 解决定位偏移的问题
# TODO: 看看两个块中心到中轴距离是否相同,如果是的话靠这个来判断一下当前超前还是落后,便于矫正
# TODO: 一些固定值根据截图的具体大小计算
# TODO: 直接用 X 轴距离简化逻辑
def open_accordant_config():
screen_size = _get_screen_size()
config_file = "{path}/config/{screen_size}/config.json".format(
path=sys.path[0],
screen_size=screen_size
)
if os.path.exists(config_file):
with open(config_file, 'r') as f:
print("Load config file from {}".format(config_file))
return json.load(f)
else:
with open('{}/config/default.json'.format(sys.path[0]), 'r') as f:
print("Load default config")
return json.load(f)
def _get_screen_size():
size_str = os.popen('adb shell wm size').read()
if not size_str:
print('请安装ADB及驱动并配置环境变量')
sys.exit()
m = re.search('(\d+)x(\d+)', size_str)
if m:
width = m.group(1)
height = m.group(2)
return "{height}x{width}".format(height=height, width=width)
config = open_accordant_config()
# Magic Number,不设置可能无法正常执行,请根据具体截图从上到下按需设置
under_game_score_y = config['under_game_score_y']
press_coefficient = config['press_coefficient'] # 长按的时间系数,请自己根据实际情况调节
piece_base_height_1_2 = config['piece_base_height_1_2'] # 二分之一的棋子底座高度,可能要调节
piece_body_width = config['piece_body_width'] # 棋子的宽度,比截图中量到的稍微大一点比较安全,可能要调节
# 模拟按压的起始点坐标,需要自动重复游戏请设置成“再来一局”的坐标
if config.get('swipe'):
swipe = config['swipe']
else:
swipe = {}
#设置模拟按压各项参数,经过多台手机测试,其中2160x1080建议调整参数为320,1210,720,910
#使用vivox20,夏普全面屏和小米mix2测试过,均可达到2000+分数(记得在开发者设置打开usb安全验证)
swipe['x1'], swipe['y1'], swipe['x2'], swipe['y2'] = 320, 410, 320, 410
screenshot_way = 2
screenshot_backup_dir = 'screenshot_backups/'
if not os.path.isdir(screenshot_backup_dir):
os.mkdir(screenshot_backup_dir)
def pull_screenshot():
global screenshot_way
# 新的方法请根据效率及适用性由高到低排序
if screenshot_way == 2 or screenshot_way == 1:
process = subprocess.Popen('adb shell screencap -p', shell=True, stdout=subprocess.PIPE)
screenshot = process.stdout.read()
if screenshot_way == 2:
binary_screenshot = screenshot.replace(b'\r\n', b'\n')
else:
binary_screenshot = screenshot.replace(b'\r\r\n', b'\n')
f = open('autojump.png', 'wb')
f.write(binary_screenshot)
f.close()
elif screenshot_way == 0:
os.system('adb shell screencap -p /sdcard/autojump.png')
os.system('adb pull /sdcard/autojump.png .')
def backup_screenshot(ts):
# 为了方便失败的时候 debug
if not os.path.isdir(screenshot_backup_dir):
os.mkdir(screenshot_backup_dir)
shutil.copy('autojump.png', '{}{}.png'.format(screenshot_backup_dir, ts))
def save_debug_creenshot(ts, im, piece_x, piece_y, board_x, board_y):
draw = ImageDraw.Draw(im)
# 对debug图片加上详细的注释
draw.line((piece_x, piece_y) + (board_x, board_y), fill=2, width=3)
draw.line((piece_x, 0, piece_x, im.size[1]), fill=(255, 0, 0))
draw.line((0, piece_y, im.size[0], piece_y), fill=(255, 0, 0))
draw.line((board_x, 0, board_x, im.size[1]), fill=(0, 0, 255))
draw.line((0, board_y, im.size[0], board_y), fill=(0, 0, 255))
draw.ellipse((piece_x - 10, piece_y - 10, piece_x + 10, piece_y + 10), fill=(255, 0, 0))
draw.ellipse((board_x - 10, board_y - 10, board_x + 10, board_y + 10), fill=(0, 0, 255))
del draw
im.save('{}{}_d.png'.format(screenshot_backup_dir, ts))
def set_button_position(im):
# 将swipe设置为 `再来一局` 按钮的位置
global swipe_x1, swipe_y1, swipe_x2, swipe_y2
w, h = im.size
left = w / 2
top = int(1584 * (h / 1920.0))
swipe_x1, swipe_y1, swipe_x2, swipe_y2 = left, top, left, top
def jump(distance):
press_time = distance * press_coefficient
press_time = max(press_time, 200) # 设置 200 ms 是最小的按压时间
press_time = int(press_time)
cmd = 'adb shell input swipe {x1} {y1} {x2} {y2} {duration}'.format(
x1=swipe_x1,
y1=swipe_y1,
x2=swipe_x2,
y2=swipe_y2,
duration=press_time
)
print(cmd)
os.system(cmd)
return press_time
def find_piece_and_board(im):
w, h = im.size
piece_x_sum = 0
piece_x_c = 0
piece_y_max = 0
board_x = 0
board_y = 0
scan_x_border = int(w / 8) # 扫描棋子时的左右边界
scan_start_y = 0 # 扫描的起始y坐标
im_pixel=im.load()
# 以50px步长,尝试探测scan_start_y
for i in range(int(h / 3), int( h*2 /3 ), 50):
last_pixel = im_pixel[0,i]
for j in range(1, w):
pixel=im_pixel[j,i]
# 不是纯色的线,则记录scan_start_y的值,准备跳出循环
if pixel[0] != last_pixel[0] or pixel[1] != last_pixel[1] or pixel[2] != last_pixel[2]:
scan_start_y = i - 50
break
if scan_start_y:
break
print('scan_start_y: ', scan_start_y)
# 从scan_start_y开始往下扫描,棋子应位于屏幕上半部分,这里暂定不超过2/3
for i in range(scan_start_y, int(h * 2 / 3)):
for j in range(scan_x_border, w - scan_x_border): # 横坐标方面也减少了一部分扫描开销
pixel = im_pixel[j,i]
# 根据棋子的最低行的颜色判断,找最后一行那些点的平均值,这个颜色这样应该 OK,暂时不提出来
if (50 < pixel[0] < 60) and (53 < pixel[1] < 63) and (95 < pixel[2] < 110):
piece_x_sum += j
piece_x_c += 1
piece_y_max = max(i, piece_y_max)
if not all((piece_x_sum, piece_x_c)):
return 0, 0, 0, 0
piece_x = int(piece_x_sum / piece_x_c);
piece_y = piece_y_max - piece_base_height_1_2 # 上移棋子底盘高度的一半
#限制棋盘扫描的横坐标,避免音符bug
if piece_x < w/2:
board_x_start = piece_x
board_x_end = w
else:
board_x_start = 0
board_x_end = piece_x
for i in range(int(h / 3), int(h * 2 / 3)):
last_pixel = im_pixel[0, i]
if board_x or board_y:
break
board_x_sum = 0
board_x_c = 0
for j in range(int(board_x_start), int(board_x_end)):
pixel = im_pixel[j,i]
# 修掉脑袋比下一个小格子还高的情况的 bug
if abs(j - piece_x) < piece_body_width:
continue
# 修掉圆顶的时候一条线导致的小 bug,这个颜色判断应该 OK,暂时不提出来
if abs(pixel[0] - last_pixel[0]) + abs(pixel[1] - last_pixel[1]) + abs(pixel[2] - last_pixel[2]) > 10:
board_x_sum += j
board_x_c += 1
if board_x_sum:
board_x = board_x_sum / board_x_c
last_pixel=im_pixel[board_x,i]
#从上顶点往下+274的位置开始向上找颜色与上顶点一样的点,为下顶点
#该方法对所有纯色平面和部分非纯色平面有效,对高尔夫草坪面、木纹桌面、药瓶和非菱形的碟机(好像是)会判断错误
for k in range(i+274, i, -1): #274取开局时最大的方块的上下顶点距离
pixel = im_pixel[board_x,k]
if abs(pixel[0] - last_pixel[0]) + abs(pixel[1] - last_pixel[1]) + abs(pixel[2] - last_pixel[2]) < 10:
break
board_y = int((i+k) / 2)
#如果上一跳命中中间,则下个目标中心会出现r245 g245 b245的点,利用这个属性弥补上一段代码可能存在的判断错误
#若上一跳由于某种原因没有跳到正中间,而下一跳恰好有无法正确识别花纹,则有可能游戏失败,由于花纹面积通常比较大,失败概率较低
for l in range(i, i+200):
pixel = im_pixel[board_x,l]
if abs(pixel[0] - 245) + abs(pixel[1] - 245) + abs(pixel[2] - 245) == 0:
board_y = l+10
break
if not all((board_x, board_y)):
return 0, 0, 0, 0
return piece_x, piece_y, board_x, board_y
def dump_device_info():
size_str = os.popen('adb shell wm size').read()
device_str = os.popen('adb shell getprop ro.product.model').read()
density_str = os.popen('adb shell wm density').read()
print("如果你的脚本无法工作,上报issue时请copy如下信息:\n**********\
\nScreen: {size}\nDensity: {dpi}\nDeviceType: {type}\nOS: {os}\nPython: {python}\n**********".format(
size=size_str.strip(),
type=device_str.strip(),
dpi=density_str.strip(),
os=sys.platform,
python=sys.version
))
def check_screenshot():
global screenshot_way
if os.path.isfile('autojump.png'):
os.remove('autojump.png')
if (screenshot_way < 0):
print('暂不支持当前设备')
sys.exit()
pull_screenshot()
try:
Image.open('./autojump.png').load()
print('采用方式{}获取截图'.format(screenshot_way))
except:
screenshot_way -= 1
check_screenshot()
def main():
dump_device_info()
check_screenshot()
while True:
pull_screenshot()
im = Image.open('./autojump.png')
# 获取棋子和 board 的位置
piece_x, piece_y, board_x, board_y = find_piece_and_board(im)
ts = int(time.time())
print(ts, piece_x, piece_y, board_x, board_y)
set_button_position(im)
jump(math.sqrt((board_x - piece_x) ** 2 + (board_y - piece_y) ** 2))
save_debug_creenshot(ts, im, piece_x, piece_y, board_x, board_y)
backup_screenshot(ts)
time.sleep(1) # 为了保证截图的时候应落稳了,多延迟一会儿
if __name__ == '__main__':
main()
关于“如何使用python实现微信跳一跳”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,使各位可以学到更多知识,如果觉得文章不错,请把它分享出去让更多的人看到。