python如何实现求最长回文子串长度
更新:HHH   时间:2023-1-7


这篇文章给大家分享的是有关python如何实现求最长回文子串长度的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。

给定一个字符串,求它最长的回文子串长度,例如输入字符串'35534321',它的最长回文子串是'3553',所以返回4。

最容易想到的办法是枚举出所有的子串,然后一一判断是否为回文串,返回最长的回文子串长度。不用我说,枚举实现的耗时是我们无法忍受的。那么有没有高效查找回文子串的方法呢?答案当然是肯定的,那就是中心扩展法,选择一个元素作为中心,然后向外发散的寻找以该元素为圆心的最大回文子串。但是又出现了新的问题,回文子串的长度即可能是基数,也可能好是偶数,对于长度为偶数的回文子串来说是不存在中心元素的。那是否有一种办法能将奇偶长度的子串归为一类,统一使用中心扩展法呢?它就是manacher算法,在原字符串中插入特殊字符,例如插入#后原字符串变成'#3#5#5#3#4#3#2#1#'。现在我们对新字符串使用中心扩展发即可,中心扩展法得到的半径就是子串的长度。

现在实现思路已经明确了,先转化字符串'35534321'  ---->  '#3#5#5#3#4#3#2#1#',然后求出以每个元素为中心的最长回文子串的长度。以下给出python实现:

#!/usr/bin/python
# -*- coding: utf-8 -*-

def max_substr(string):
  s_list = [s for s in string]
  string = '#' + '#'.join(s_list) + '#'
  max_length = 0
  length = len(string)
  for index in range(0, length):
    r_length = get_length(string, index)
    if max_length < r_length:
      max_length = r_length
  return max_length

def get_length(string, index):
  # 循环求出index为中心的最长回文字串
  length = 0
  r_ = len(string)
  for i in range(1,index+1):
    if index+i < r_ and string[index-i] == string[index+i]:
      length += 1
    else:
      break
  return length

if __name__ == "__main__":
  result = max_substr("35534321")
  print result

功能已经实现了,经过测试也没有bug,但是我们静下心来想一想,目前的解法是否还有优化空间呢?根据目前的解法,我们求出了‘35534321‘中每个元素中心的最大回文子串。当遍历到'4'时,我们已经知道目前最长的回文子串的长度max_length是4,这是我们求出了以4为中心的最长回文子串长度是3,它比max_length要小,所以我们不更新max_length。换句话说,我们计算以4为中心的最长回文字串长度是做了无用功。这就是我们要优化的地方,既然某个元素的最长的回文子串长度并没有超过max_length,我们就没有必要计算它的最长回文子串,在遍历一个新的元素时,我们要优先判断以它为中心的回文子串的长度是否能超越max_length,如果不能超过,就继续遍历下一个元素。以下是优化后的实现:

#!/usr/bin/python
# -*- coding: utf-8 -*-

def max_substr(string):
  s_list = [s for s in string]
  string = '#' + '#'.join(s_list) + '#'
  max_length = 0
  length = len(string)
  for index in range(0, length):
    r_length = get_length3(string, index, max_length)
    if max_length < r_length:
      max_length = r_length
  return max_length

def get_length3(string, index, max_length):
  # 基于已知的最长字串求最长字串
  # 1.中心+最大半径超出字符串范围, return
  r_ = len(string)
  if index + max_length > r_:
    return max_length

  # 2.无法超越最大半径, return
  l_string = string[index - max_length + 1 : index + 1]
  r_string = string[index : index + max_length]
  if l_string != r_string[::-1]:
    return max_length

  # 3.计算新的最大半径
  result = max_length
  for i in range(max_length, r_):
    if index-i >= 0 and index+i < r_ and string[index-i] == string[index+i]:
      result += 1
    else:
      break
  return result - 1

if __name__ == "__main__":
  result = max_substr("35534321")
  print result

那么速度到底提升了多少呢,以字符串1000个‘1'为例,优化前的算法执行时间为0.239018201828,优化后为0.0180191993713,速度提升了10倍左右

/usr/bin/python /Users/hakuippei/PycharmProjects/untitled/the_method_of_programming.py
0.239018201828
0.0180191993713

再给大家分享一个实例:

#!usr/bin/env python
#encoding:utf-8

'''
__Author__:沂水寒城
功能:寻找最长回文子序列
'''

def slice_window(one_str,w=1):
  '''
  滑窗函数
  '''
  res_list=[]
  for i in range(0,len(one_str)-w+1):
    res_list.append(one_str[i:i+w])
  return res_list


def is_huiwen(one_str_list): 
  '''
  输入一个字符串列表,判断是否为回文序列 
  ''' 
  if len(one_str_list)==1: 
    return True  
  else: 
    half=len(one_str_list)/2 
    if len(one_str_list)%2==0: 
      first_list=one_str_list[:half] 
      second_list=one_str_list[half:] 
    else: 
      first_list=one_str_list[:half] 
      second_list=one_str_list[half+1:] 
    if first_list==second_list[::-1]: 
      return True  
    else: 
      return False 


def find_longest_sub_palindrome_str(one_str):
  '''
  主函数,寻找最长回文子序列
  '''
  all_sub=[]
  for i in range(1,len(one_str)):
    all_sub+=slice_window(one_str,i)
  all_sub.append(one_str)
  new_list=[]
  for one in all_sub:
    if is_huiwen(list(one)):
      new_list.append(one)
  new_list.sort(lambda x,y:cmp(len(x),len(y)),reverse=True)
  print new_list[0]


if __name__ == '__main__':
  one_str_list=['uabcdcbaop','abcba','dmfdkgbbfdlg','mnfkabcbadk']
  for one_str in one_str_list:
    find_longest_sub_palindrome_str(one_str)

结果如下:

abcdcba 
abcba 
bb 
abcba 
[Finished in 0.3s]

感谢各位的阅读!关于“python如何实现求最长回文子串长度”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,让大家可以学到更多知识,如果觉得文章不错,可以把它分享出去让更多的人看到吧!

返回开发技术教程...