这期内容当中小编将会给大家带来有关怎么在Django中使用Celery异步任务队列,文章内容丰富且以专业的角度为大家分析和叙述,阅读完这篇文章希望大家可以有所收获。
1 Celery简介
Celery是异步任务队列,可以独立于主进程运行,在主进程退出后,也不影响队列中的任务执行。
任务执行异常退出,重新启动后,会继续执行队列中的其他任务,同时可以缓存停止期间接收的工作任务,这个功能依赖于消息队列(MQ、Redis)。
1.1 Celery原理
Celery的 架构 由三部分组成,消息中间件(message broker),任务执行单元(worker)和任务执行结果存储(task result store)组成。
消息中间件:Celery本身不提供消息服务,但是可以方便的和第三方提供的消息中间件集成。包括, RabbitMQ , Redis , MongoDB (experimental), Amazon SQS (experimental),CouchDB (experimental), SQLAlchemy (experimental),Django ORM (experimental), IronMQ。推荐使用:RabbitMQ、Redis作为消息队列。
任务执行单元:Worker是Celery提供的任务执行的单元,worker并发的运行在分布式的系统节点中。
任务结果存储:Task result store用来存储Worker执行的任务的结果,Celery支持以不同方式存储任务的结果,包括AMQP, Redis,memcached, MongoDB,SQLAlchemy, Django ORM,Apache Cassandra, IronCache
1.2Celery适用场景
异步任务处理:例如给注册用户发送短消息或者确认邮件任务。 大型任务:执行时间较长的任务,例如视频和图片处理,添加水印和转码等,需要执行任务时间长。 定时执行的任务:支持任务的定时执行和设定时间执行。例如性能压测定时执行。
2Celery开发环境准备
2.1 环境准备
软件名称 | 版本号 | 说明 |
Linux | Centos 6.5(64bit) | 操作系统 |
Python | 3.5.2 |
|
Django | 1.10 | Web框架 |
Celery | 4.0.2 | 异步任务队列 |
Redis | 2.4 | 消息队列 |
2.2 Celery安装
使用方法介绍:
Celery的运行依赖消息队列,使用时需要安装redis或者rabbit。
这里我们使用Redis。安装redis库:
sudo yum install redis
启动redis:
sudo service redis start
安装celery库
sudo pip install celery==4.0.2
3Celery单独执行任务
3.1编写任务
创建task.py文件
说明:这里初始Celery实例时就加载了配置,使用的redis作为消息队列和存储任务结果。
运行celery:
$ celery -A task worker --loglevel=info
看到下面的打印,说明celery成功运行。
3.2 调用任务
直接打开python交互命令行
执行下面代码:
可以celery的窗口看到任务的执行信息
任务执行状态监控和获取结果:
3.3任务调用方法总结
有两种方法:
delay和apply_async ,delay方法是apply_async简化版。
add.delay(2, 2)
add.apply_async((2, 2))
add.apply_async((2, 2), queue='lopri')
delay方法是apply_async简化版本。
apply_async方法是可以带非常多的配置参数,包括指定队列等
Queue 指定队列名称,可以把不同任务分配到不同的队列 3.4 任务状态
每个任务有三种状态:PENDING -> STARTED -> SUCCESS
任务查询状态:res.state
来查询任务的状态
4与Django集成
上面简单介绍了celery异步任务的基本方法,结合我们实际的应用,我们需要与Django一起使用,下面介绍如何与Django结合。
4.1与Django集成方法
与Django集成有两种方法:
Django 1.8 以上版本:与Celery 4.0版本集成
Django 1.8 以下版本:与Celery3.1版本集成,使用django-celery库
今天我们介绍celery4.0 和django 1.8以上版本集成方法。
4.2 创建项目文件
创建一个项目:名字叫做proj
- proj/
- proj/__init__.py
- proj/settings.py
- proj/urls.py
- proj/wsgi.py
- manage.py
创建一个新的文件:proj/proj/mycelery.py
from __future__ import absolute_import, unicode_literals
import os
from celery import Celery
# set the default Django settings module for the 'celery' program.
os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'proj.settings')
app = Celery('proj')
# Using a string here means the worker don't have to serialize
# the configuration object to child processes.
# - namespace='CELERY' means all celery-related configuration keys
# should have a `CELERY_` prefix.
app.config_from_object('django.conf:settings', namespace='CELERY')
# Load task modules from all registered Django app configs.
app.autodiscover_tasks()
在proj/proj/__init__.py:添加
from __future__ import absolute_import, unicode_literals
# This will make sure the app is always imported when
# Django starts so that shared_task will use this app.
from .mycelery import app as celery_app
__all__ = ['celery_app']
4.3 配置Celery
我们在mycelery.py文件中说明celery的配置文件在settings.py中,并且是以CELERY开头。
app.config_from_object('django.conf:settings', namespace='CELERY')
在settings.py文件中添加celery配置:
我们的配置是使用redis作为消息队列,消息的代理和结果都是用redis,任务的序列化使用json格式。
重要:redis://127.0.0.1:6379/0这个说明使用的redis的0号队列,如果有多个celery任务都使用同一个队列,则会造成任务混乱。最好是celery实例单独使用一个队列。
4.4创建APP
创建Django的App,名称为celery_task,在app目录下创建tasks.py文件。
完成后目录结构为:
├── celery_task
│ ├── admin.py
│ ├── apps.py
│ ├── __init__.py
│ ├── migrations
│ │ └── __init__.py
│ ├── models.py
│ ├── tasks.py
│ ├── tests.py
│ └── views.py
├── db.sqlite3
├── manage.py
├── proj
│ ├── celery.py
│ ├── __init__.py
│ ├── settings.py
│ ├── urls.py
│ └── wsgi.py
└── templates
4.5编写task任务
编辑任务文件
tasks.py
在tasks.py文件中添加下面代码
# Create your tasks here
from __future__ import absolute_import, unicode_literals
from celery import shared_task
@shared_task
def add(x, y):
return x + y
@shared_task
def mul(x, y):
return x * y
@shared_task
def xsum(numbers):
return sum(numbers)
启动celery:celery -A proj.mycelery worker -l info
说明:proj 为模块名称,mycelery 为celery 的实例所在的文件。
启动成功打印:
4.6在views中调用任务
在views中编写接口,实现两个功能:
触发任务,然后返回任务的结果和任务ID
根据任务ID查询任务状态
代码如下:
启动django。
新开一个会话启动celery;启动命令为:celery –A proj.mycelery worker –l info
访问 http://127.0.0.1:8000/add ,可以看到返回的结果。
在celery运行的页面,可以看到下面输出:
4.7在views中查询任务状态
有的时候任务执行时间较长,需要查询任务是否执行完成,可以根据任务的id来查询任务状态,根据状态进行下一步操作。
可以看到任务的状态为:SUCCESS
5Celery定时任务
Celery作为异步任务队列,我们可以按照我们设置的时间,定时的执行一些任务,例如每日数据库备份,日志转存等。
Celery的定时任务配置非常简单:
定时任务的配置依然在setting.py文件中。
说明:如果觉得celery 的数据配置文件和Django 的都在setting.py 一个文件中不方便,可以分拆出来,只需要在mycelery.py 的文件中指明即可。
app.config_from_object('django.conf:yoursettingsfile', namespace='CELERY')
5.1任务间隔运行
#每30秒调用task.add
from datetime import timedelta
CELERY_BEAT_SCHEDULE = {
'add-every-30-seconds': {
'task': 'tasks.add',
'schedule': timedelta(seconds=30),
'args': (16, 16)
},
}
5.2定时执行
定时每天早上7:30分运行。
注意:设置任务时间时注意时间格式,UTC时间或者本地时间。
#crontab任务
#每天7:30调用task.add
from celery.schedules import crontab
CELERY_BEAT_SCHEDULE = {
# Executes every Monday morning at 7:30 A.M
'add-every-monday-morning': {
'task': 'tasks.add',
'schedule': crontab(hour=7, minute=30),
'args': (16, 16),
},
}
5.3定时任务启动
配置了定时任务,除了worker进程外,还需要启动一个beat进程。
Beat进程的作用就相当于一个定时任务,根据配置来执行对应的任务。
5.3.1 启动beat进程
命令如下:celery -A proj.mycelery beat -l info
5.3.2 启动worker进程
Worker进程启动和前面启动命令一样。celery –A proj.mycelery worker –l info
6 Celery深入
Celery任务支持多样的运行模式:
支持动态指定并发数 --autoscale=10,3 (always keep 3 processes, but grow to 10 if necessary).
支持链式任务
支持Group任务
支持任务不同优先级
支持指定任务队列
支持使用eventlet模式运行worker
例如:指定并发数为1000
celery -A proj.mycelery worker -c 1000
上述就是小编为大家分享的怎么在Django中使用Celery异步任务队列了,如果刚好有类似的疑惑,不妨参照上述分析进行理解。如果想知道更多相关知识,欢迎关注天达云行业资讯频道。