这期内容当中小编将会给大家带来有关numpy中怎么数组元素统一赋值,文章内容丰富且以专业的角度为大家分析和叙述,阅读完这篇文章希望大家可以有所收获。
例子1:
In [2]: arr =np.empty((8,4))
In [3]: arr
Out[3]:
array([[ 0., 0., 0., 0.],
[ 0., 0., 0., 0.],
[ 0., 0., 0., 0.],
[ 0., 0., 0., 0.],
[ 0., 0., 0., 0.],
[ 0., 0., 0., 0.],
[ 0., 0., 0., 0.],
[ 0., 0., 0., 0.]])
In [4]: arr[1] = 1
In [5]: arr
Out[5]:
array([[ 0., 0., 0., 0.],
[ 1., 1., 1., 1.],
[ 0., 0., 0., 0.],
[ 0., 0., 0., 0.],
[ 0., 0., 0., 0.],
[ 0., 0., 0., 0.],
[ 0., 0., 0., 0.],
[ 0., 0., 0., 0.]])
例子2:
In [6]: arr1 =np.empty(2)
In [8]: arr1
Out[8]:array([ 7.74860419e-304, 7.74860419e-304])
In [9]: arr1 = 0
In [10]: arr1
Out[10]: 0
这两段看上去似乎出现了行为不一致,其实利用一般面向对象的标签理解模型还是能够理解的。
例子1中,加上了索引之后的标签其实指代的就是具体的存储区,而例子2中,直接使用了一个标签而已。那么这样如何实现对一个一维数组的全体赋值呢?其实只需要进行全部元素的索引即可,
具体方法实现如下:
In [11]: arr1 =np.empty(2)
In [12]: arr1
Out[12]: array([0., 0.])
In [13]: arr1[:]
Out[13]: array([0., 0.])
In [14]: arr1[:] =0
In [15]: arr1
Out[15]: array([0., 0.])
上述就是小编为大家分享的numpy中怎么数组元素统一赋值了,如果刚好有类似的疑惑,不妨参照上述分析进行理解。如果想知道更多相关知识,欢迎关注天达云行业资讯频道。