这篇文章主要为大家展示了“pandas中string如何转dataframe”,内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下“pandas中string如何转dataframe”这篇文章吧。
业务上碰到用pandas处理一个大文件的内存不够问题,需要做concat 合并多个文件,每个文件数据在1.4亿行左右。当时第一反应是把dataframe分割成多块小文件处理,后面发现即使pandas内存问题解决了,用pickle做保存数据时也会提升内存不够的报错,后来把dataframe对象转化成string,发现内存占用减少了近一半。
所以打算用先转成string再dump到离线文件里,官网文档上只有to_string的说明,而从string转dataframe却没有提供直接的函数。
其实很简单,我们可以把string放到一个文件对象里,然后通过read_csv函数来创建dataframe对象。
import sys
if sys.version_info[0] < 3:
from StringIO import StringIO
else:
from io import StringIO
import pandas as pd
TESTDATA=StringIO("""col1;col2;col3
1;4.4;99
2;4.5;200
3;4.7;65
4;3.2;140
""")
df = pd.read_csv(TESTDATA, sep=";")
以上是“pandas中string如何转dataframe”这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注天达云行业资讯频道!