如何在python中处理NaN值?针对这个问题,这篇文章详细介绍了相对应的分析和解答,希望可以帮助更多想解决这个问题的小伙伴找到更简单易行的方法。
如下所示:
python 设置值
import pandas as pd
import numpy as np
dates = pd.date_range('20180101',periods=6)
df = pd.DataFrame(np.arange(24).reshape(6,4),index=dates,columns=['A','B','C','D'])
print(df)
A B C D
2018-01-01 0 1 2 3
2018-01-02 4 5 6 7
2018-01-03 8 9 10 11
2018-01-04 12 13 14 15
2018-01-05 16 17 18 19
2018-01-06 20 21 22 23
df.loc['20180102','A'] = 1111
print(df)
A B C D
2018-01-01 0 1 2 3
2018-01-02 1111 5 6 7
2018-01-03 8 9 10 11
2018-01-04 12 13 14 15
2018-01-05 16 17 18 19
2018-01-06 20 21 22 23
df.iloc[2,2] = 2222
print(df)
A B C D
2018-01-01 0 1 2 3
2018-01-02 1111 5 6 7
2018-01-03 8 9 2222 11
2018-01-04 12 13 14 15
2018-01-05 16 17 18 19
2018-01-06 20 21 22 23
df[df.A>12]=0 #修改df数据中符合条件的所有值
print(df)
A B C D
2018-01-01 0 1 2 3
2018-01-02 0 0 0 0
2018-01-03 8 9 2222 11
2018-01-04 12 13 14 15
2018-01-05 0 0 0 0
2018-01-06 0 0 0 0
df.A[df.A<4]=11 #修改df数据中A列符合条件的所有值
print(df)
A B C D
2018-01-01 11 1 2 3
2018-01-02 11 0 0 0
2018-01-03 8 9 2222 11
2018-01-04 12 13 14 15
2018-01-05 11 0 0 0
2018-01-06 11 0 0 0
df['F'] = np.nan
print(df)
A B C D F
2018-01-01 11 1 2 3 NaN
2018-01-02 11 0 0 0 NaN
2018-01-03 8 9 2222 11 NaN
2018-01-04 12 13 14 15 NaN
2018-01-05 11 0 0 0 NaN
2018-01-06 11 0 0 0 NaN
print(np.any(df.isnull())== True) #isnull检测是否含有NaN值,有就返回True。np.any()检测df数据中是否含有等于Ture的值
True
NaN值填充:print(df.fillna(value=0))
python有哪些常用库
python常用的库:1.requesuts;2.scrapy;3.pillow;4.twisted;5.numpy;6.matplotlib;7.pygama;8.ipyhton等。
关于如何在python中处理NaN值问题的解答就分享到这里了,希望以上内容可以对大家有一定的帮助,如果你还有很多疑惑没有解开,可以关注天达云行业资讯频道了解更多相关知识。