今天就跟大家聊聊有关怎么在pandas中使用map函数,可能很多人都不太了解,为了让大家更加了解,小编给大家总结了以下内容,希望大家根据这篇文章可以有所收获。
1、字典映射
import pandas as pd
from pandas import Series, DataFrame
data = DataFrame({'food':['bacon','pulled pork','bacon','Pastrami',
'corned beef','Bacon','pastrami','honey ham','nova lox'],
'ounces':[4,3,12,6,7.5,8,3,5,6]})
meat_to_animal = {
'bacon':'pig',
'pulled pork':'pig',
'pastrami':'cow',
'corned beef':'cow',
'honey ham':'pig',
'nova lox':'salmon' }
data['animal'] = data['food'].map(str.lower).map(meat_to_animal)
data
data['food'].map(lambda x: meat_to_animal[x.lower()])
2、应用函数
In [579]: import pandas as pd
In [580]: from pandas import Series, DataFrame
In [581]: index = pd.date_range('2017-08-15', periods=10)
In [582]: ser = Series(list(range(10)), index=index)
In [583]: ser
Out[583]:
2017-08-15 0
2017-08-16 1
2017-08-17 2
2017-08-18 3
2017-08-19 4
2017-08-20 5
2017-08-21 6
2017-08-22 7
2017-08-23 8
2017-08-24 9
Freq: D, dtype: int64
In [585]: ser.index.map(lambda x: x.day)
Out[585]: Int64Index([15, 16, 17, 18, 19, 20, 21, 22, 23, 24], dtype='int64')
In [586]: ser.index.map(lambda x: x.weekday)
Out[586]: Int64Index([1, 2, 3, 4, 5, 6, 0, 1, 2, 3], dtype='int64')
In [587]: ser.map(lambda x: x+10)
Out[587]:
2017-08-15 10
2017-08-16 11
2017-08-17 12
2017-08-18 13
2017-08-19 14
2017-08-20 15
2017-08-21 16
2017-08-22 17
2017-08-23 18
2017-08-24 19
Freq: D, dtype: int64
In [588]: def f(x):
...: if x < 5:
...: return True
...: else:
...: return False
...:
In [589]: ser.map(f)
Out[589]:
2017-08-15 True
2017-08-16 True
2017-08-17 True
2017-08-18 True
2017-08-19 True
2017-08-20 False
2017-08-21 False
2017-08-22 False
2017-08-23 False
2017-08-24 False
Freq: D, dtype: bool
看完上述内容,你们对怎么在pandas中使用map函数有进一步的了解吗?如果还想了解更多知识或者相关内容,请关注天达云行业资讯频道,感谢大家的支持。