这篇文章给大家分享的是有关如何对tensorflow的模型保存和调用的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。
我们通常采用tensorflow来训练,训练完之后应当保存模型,即保存模型的记忆(权重和偏置),这样就可以来进行人脸识别或语音识别了。
1.模型的保存
# 声明两个变量
v1 = tf.Variable(tf.random_normal([1, 2]), name="v1")
v2 = tf.Variable(tf.random_normal([2, 3]), name="v2")
init_op = tf.global_variables_initializer() # 初始化全部变量
saver = tf.train.Saver() # 声明tf.train.Saver类用于保存模型
with tf.Session() as sess:
sess.run(init_op)
print("v1:", sess.run(v1)) # 打印v1、v2的值一会读取之后对比
print("v2:", sess.run(v2))
#定义保存路径,一定要是绝对路径,且用‘/ '分隔父目录与子目录
saver_path = saver.save(sess, "C:/Users/Administrator/Desktop/tt/model.ckpt") # 将模型保存到save/model.ckpt文件
print("Model saved in file:", saver_path)
2.模型的读取
直接读取模型时,可能会报错,我是用Spyder编译的,可以把Spyder关掉,再重新打开,就可以读取数据了。原因可能是:在模型保存时将变量初始化了。
import tensorflow as tf
# 使用和保存模型代码中一样的方式来声明变量
v1 = tf.Variable(tf.random_normal([1, 2]), name="v1")
v2 = tf.Variable(tf.random_normal([2, 3]), name="v2")
saver = tf.train.Saver() # 声明tf.train.Saver类用于保存模型
with tf.Session() as sess:
saver.restore(sess, "C:/Users/Administrator/Desktop/tt/model.ckpt") # 即将固化到硬盘中的Session从保存路径再读取出来
print("v1:", sess.run(v1)) # 打印v1、v2的值和之前的进行对比
print("v2:", sess.run(v2))
print("Model Restored")
感谢各位的阅读!关于“如何对tensorflow的模型保存和调用”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,让大家可以学到更多知识,如果觉得文章不错,可以把它分享出去让更多的人看到吧!