这期内容当中小编将会给大家带来有关怎么在python中利用tornado实现一个爬虫,文章内容丰富且以专业的角度为大家分析和叙述,阅读完这篇文章希望大家可以有所收获。
# coding=utf-8
#!/usr/bin/env python
import time
from datetime import timedelta
try:
from HTMLParser import HTMLParser
from urlparse import urljoin, urldefrag
except ImportError:
from html.parser import HTMLParser
from urllib.parse import urljoin, urldefrag
from tornado import httpclient, gen, ioloop, queues
# 设置要爬取的网址
base_url = 'http://www.baidu.com'
# 设置worker数量
concurrency = 10
# 此代码会获取base_url下的所有其他url
@gen.coroutine
def get_links_from_url(url):
try:
# 通过异步向url发起请求
response = yield httpclient.AsyncHTTPClient().fetch(url)
print('fetched %s' % url)
# 响应如果是字节类型 进行解码
html = response.body if isinstance(response.body, str) \
else response.body.decode(errors='ignore')
# 构建url列表
urls = [urljoin(url, remove_fragment(new_url))
for new_url in get_links(html)]
except Exception as e:
print('Exception: %s %s' % (e, url))
# 报错返回空列表
raise gen.Return([])
# 返回url列表
raise gen.Return(urls)
def remove_fragment(url):
#去除锚点
pure_url, frag = urldefrag(url)
return pure_url
def get_links(html):
#从html页面里提取url
class URLSeeker(HTMLParser):
def __init__(self):
HTMLParser.__init__(self)
self.urls = []
def handle_starttag(self, tag, attrs):
href = dict(attrs).get('href')
if href and tag == 'a':
self.urls.append(href)
url_seeker = URLSeeker()
url_seeker.feed(html)
return url_seeker.urls
@gen.coroutine
def main():
# 创建队列
q = queues.Queue()
# 记录开始时间戳
start = time.time()
# 构建两个集合
fetching, fetched = set(), set()
@gen.coroutine
def fetch_url():
# 从队列中取出数据
current_url = yield q.get()
try:
# 如果取出的数据在队列中已经存在 返回
if current_url in fetching:
return
print('fetching %s' % current_url)
# 如果不存在添加到集合当中
fetching.add(current_url)
# 从新放入的链接中继续获取链接
urls = yield get_links_from_url(current_url)
# 将已经请求玩的url放入第二个集合
fetched.add(current_url)
for new_url in urls:
# Only follow links beneath the base URL
# 如果链接是以传入的url开始则放入队列
if new_url.startswith(base_url):
yield q.put(new_url)
finally:
# 队列内数据减一
q.task_done()
@gen.coroutine
def worker():
while True:
# 保证程序持续运行
yield fetch_url()
# 将第一个url放入队列
q.put(base_url)
# Start workers, then wait for the work queue to be empty.
for _ in range(concurrency):
# 启动对应数量的worker
worker()
# 等待队列数据处理完成
yield q.join(timeout=timedelta(seconds=300))
# 如果两个集合不相等抛出异常
assert fetching == fetched
# 打印执行时间
print('Done in %d seconds, fetched %s URLs.' % (
time.time() - start, len(fetched)))
if __name__ == '__main__':
io_loop = ioloop.IOLoop.current()
io_loop.run_sync(main)
上述就是小编为大家分享的怎么在python中利用tornado实现一个爬虫了,如果刚好有类似的疑惑,不妨参照上述分析进行理解。如果想知道更多相关知识,欢迎关注天达云行业资讯频道。