python2与python3中如何对NaN类型数据判断和转换
更新:HHH   时间:2023-1-7


这篇文章主要介绍python2与python3中如何对NaN类型数据判断和转换,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!

在对一堆新数据进行数据清洗的时候,遇到了一个这样的问题:

ValueError: cannot convert float NaN to integer

一开始是这样的,我用的jupyter是python35的,使用DataFrame读入了数据,其中有一列是year,默认读入时是将year这一列转换为了float,所以就有了这样的现象:

年份都是float类型了,看得我强迫症都犯了。于是通过这样的代码来进行强转,于是就报了上面的错误了。

df.year = [int(y) for y in df.year]

简单描述一下问题,其实就是NaN在python35中无法被强转。

首先说一下,NaN类型在python25中在强转int的时候默认是转换为0的,而在python25之后的版本再进行转换的时候就会报以上的错误。

我们先打印看一下np.nan的类型:

print(type(np.nan))
<type 'float'>

np.nan是float类型,但是在进行int转换的时候就会报错。

解决方法:

使用is或者==进行判断是不是NaN,不是NaN进行强转int,是则用0代替。

先说一下==和is使用时的区别:

is和==都是对对象进行比较判断作用的,但对对象比较判断的内容并不相同。

如果有a跟b两个变量,只有数值型和字符串型的情况下,a is b才为True,当a和b是tuple,list,dict、set或者是实例化对象时,a is b为False。

==是python标准操作符中的比较操作符,用来比较判断两个对象的value(值)是否相等。

通过下面的代码可以看出,np.nan==np.nan结果是False,但是np.nan is np.nan却是True。

a = np.nan
 
 
print(a == np.nan)
print(a == a)
print(a is np.nan)
print(a is a)
 
 
False
False
True
True

因此,通过每个元素与自身比较就可以解决了,代码如下:

year = []
for y in df.year:
 if y == y:
  year.append(int(y))
 else:
  year.append(0)

以上是“python2与python3中如何对NaN类型数据判断和转换”这篇文章的所有内容,感谢各位的阅读!希望分享的内容对大家有帮助,更多相关知识,欢迎关注天达云行业资讯频道!

返回开发技术教程...