这篇文章主要介绍python训练数据时如何打乱训练数据与标签,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!
如下所示:
<code class="language-python">import numpy as np
data = np.array([[1,1],[2,2],[3,3],[4,4],[5,5]])
y = np.array([1,2,3,4,5])
print '-------第1种方法:通过打乱索引从而打乱数据,好处是1:数据量很大时能够节约内存,2每次都不一样----------'
data = np.array([[1,1],[2,2],[3,3],[4,4],[5,5]])
data_num, _= data.shape #得到样本数
index = np.arange(data_num) # 生成下标
np.random.shuffle(index)
print '-------原数据:----------'
print '数据:',data
print '标签:', y
print '-------打乱数据:----------'
print '数据:',data[index]
print '标签:',y[index]
print '-------第2种方法:直接的打乱数据,利用随机数种子,好处:每次打乱的顺序是固定的----------'
data = np.array([[1,1],[2,2],[3,3],[4,4],[5,5]])
y = np.array([1,2,3,4,5])
print '-------原数据:----------'
print '数据:',data
print '标签:', y
print '-------打乱数据:----------'
np.random.seed(116)
np.random.shuffle(data)
np.random.seed(116)
np.random.shuffle(y)
print '数据:',data
print '标签:', y</code>
以上是“python训练数据时如何打乱训练数据与标签”这篇文章的所有内容,感谢各位的阅读!希望分享的内容对大家有帮助,更多相关知识,欢迎关注天达云行业资讯频道!