Python如何实现找出所有水仙花数
更新:HHH   时间:2023-1-7


这篇文章主要介绍了Python如何实现找出所有水仙花数,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。

水仙花数是指一个 3位正整数,它的每个位上的数字的 3 次幂之和等于它本身。(例如:1^3 + 5^3+ 3^3 = 153)

下面用一句代码实现找出所有的水仙花数:

方法一:

>>> 
>>> a = list(map(lambda x: x[1], filter(lambda x: x[0], [(i*100+j*10+k == i**3+j**3+k**3, i**3+j**3+k**3) for i in range(1, 10) for j in range(0, 10) for k in range(0, 10)])))
>>> print(a)
[153, 370, 371, 407]
>>>

说明:

上面的代码可以分解三句代码:

a = [(i*100+j*10+k == i**3+j**3+k**3, i**3+j**3+k**3) for i in range(1, 10) for j in range(0, 10) for k in range(0, 10)]
b = filter(lambda x: x[0], a)
c = list(map(lambda x: x[1], b))

第一句表示用列表推到遍历所有的三位数,每个数都打上标记,是水仙花数着标记True,不是则标记False,标记和数放到一个元祖:(flag, value),所有元组放在一个list结构里。

第二句表示筛选出标记为True的元组。

第三句表示把第一句筛选出来的元组的第二个值放到list结构里。

加上print语句,执行一遍上面三句代码即可明白。

方法二:

只用列表推导。

>>> a = [i**3+j**3+k**3 for i in range(1, 10) for j in range(0, 10) for k in range(0, 10) if i*100+j*10+k == i**3+j**3+k**3]
>>> print(a)
[153, 370, 371, 407]
>>>

感谢你能够认真阅读完这篇文章,希望小编分享的“Python如何实现找出所有水仙花数”这篇文章对大家有帮助,同时也希望大家多多支持天达云,关注天达云行业资讯频道,更多相关知识等着你来学习!

返回开发技术教程...