如何实现RocketMQ性能压测分析
更新:HHH   时间:2023-1-7


这篇文章将为大家详细讲解有关如何实现RocketMQ性能压测分析,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。

一   机器部署

1.1  机器组成

1台nameserver

1台broker  异步刷盘

2台producer

2台consumer

1.2  硬件配置

CPU  两颗x86_64cpu,每颗cpu12核,共24核

内存 48G

网卡 千兆网卡

磁盘 除broker机器的磁盘是RAID10,共1.1T,其他都是普通磁盘约500G

1.3  部署结构

橙色箭头为数据流向,黑色连接线为网络连接

1.4  内核参数

broker是一个存储型的系统,针对磁盘读写有自己的刷盘策略,大量使用文件内存映射,文件句柄和内存消耗量都比较巨大。因此,系统的默认设置并不能使RocketMQ发挥很好的性能,需要对系统的pagecache,内存分配,I/O调度,文件句柄限制做一些针对性的参数设置。

系统I/O和虚拟内存设置

echo 'vm.overcommit_memory=1' >> /etc/sysctl.conf

echo 'vm.min_free_kbytes=5000000' >> /etc/sysctl.conf

echo 'vm.drop_caches=1' >> /etc/sysctl.conf

echo 'vm.zone_reclaim_mode=0' >> /etc/sysctl.conf

echo 'vm.max_map_count=655360' >> /etc/sysctl.conf

echo 'vm.dirty_background_ratio=50' >> /etc/sysctl.conf

echo 'vm.dirty_ratio=50' >> /etc/sysctl.conf

echo 'vm.page-cluster=3' >> /etc/sysctl.conf

echo 'vm.dirty_writeback_centisecs=360000' >> /etc/sysctl.conf

echo 'vm.swappiness=10' >> /etc/sysctl.conf

系统文件句柄设置

echo 'ulimit -n 1000000' >> /etc/profile

echo 'admin hard nofile 1000000' >> /etc/security/limits.conf

系统I/O调度算法

deadline

1.5 JVM参数

采用RocketMQ默认设置

 -server -Xms4g -Xmx4g -Xmn2g -XX:PermSize=128m -XX:MaxPermSize=320m -XX:+UseConcMarkSweepGC -XX:+UseCMSCompactAtFullCollection -XX:CMSInitiatingOccupancyFraction=70 -XX:+CMSParallelRemarkEnabled -XX:SoftRefLRUPolicyMSPerMB=0 -XX:+CMSClassUnloadingEnabled -XX:SurvivorRatio=8 -XX:+DisableExplicitGC -verbose:gc -Xloggc:/root/rocketmq_gc.log -XX:+PrintGCDetails -XX:-OmitStackTraceInFastThrow 

二   性能评测

2.1  评测目的

压测单机TPS,评估单机容量

2.2  评测指标

最高的TPS不代表最适合的TPS,必须在TPS和系统资源各项指标之间取得一个权衡,系统资源快达到极限,但尚能正常运转,此时的TPS是比较合适的。比如ioutil最好不要超过75%,cpu load最好不超过总的核数或者太多,没有发生频繁的swap导致较大的内存颠簸。所以不能只关注TPS,同时要关注以下指标:

消息:TPS

cpu:load,sy,us

内存:useed,free,swap,cache,buffer

I/O:iops,ioutil,吞吐量(数据物理读写大小/秒)

网络:网卡流量

2.3  评测方式

两台producer起等量线程,不间断的向broker发送大小为2K的消息,2K消息意味着1000个字符,这个消息算比较大了,完全可以满足业务需要。

2.4  评测结果

TPS比较高

    经过长时间测试和观察,单个borker TPS高达16000,也就是说服务器能每秒处理16000条消息,且消费端及时消费,从服务器存储消息到消费端消费完该消息平均时延约为1.3秒,且该时延不会随着TPS变大而变大,是个比较稳定的值。

Broker稳定性较高

    两台producer一共启动44个线程10个小时不停发消息,broker非常稳定,这可简单意味着实际生产环境中可以有几十个producer向单台broker高频次发送消息,但是broker还会保持稳定。在这样比较大的压力下,broker的load最高才到3(24核的cpu),有大量的内存可用。

    而且,连续10几小时测试中,broker的jvm非常平稳,没有发生一次fullgc,新生代GC回收效率非常高,内存没有任何压力,以下是摘自gclog的数据:

2014-07-17T22:43:07.407+0800: 79696.377: [GC2014-07-17T22:43:07.407+0800: 79696.377: [ParNew: 1696113K->18686K(1887488K), 0.1508800 secs] 2120430K->443004K(3984640K), 0.1513730 secs] [Times: user=1.36 sys=0.00, real=0.16 secs] 

新生代大小为2g,回收前内存占用约为1.7g,回收后内存占用17M左右,回收效率非常高。

 关于磁盘IO和内存

    平均单个物理IO耗时约为0.06毫秒,IO几乎没有额外等待,因为await和svctm基本相等。整个测试过程,没有发生磁盘物理读,因为文件映射的关系,大量的cached内存将文件内容都缓存了,内存还有非常大的可用空间。

系统的性能瓶颈

    TPS到达16000后,再就上不去了,此时千兆网卡的每秒流量约为100M,基本达到极限了,所以网卡是性能瓶颈。不过,系统的IOUTIL最高已经到达40%左右了,这个数字已经不低了,所以即使网络流量增加,但是系统IO指标可能已经不健康了,总体来看,单机16000的TPS是比较安全的值。

以下是各项指标的趋势

TPS

TPS最高可以压倒16000左右,再往上压,TPS有下降趋势

内存
内存非常平稳,总量48G,实际可用内存非常高
没有发生swap交换,不会因为频繁访问磁盘导致系统性能颠簸
大量内存被用来作为文件缓存,见cached指标,极大的避免了磁盘物理读

磁盘吞吐量

随着线程数增加,磁盘物理IO每秒数据读写大约为70M左右

IO百分比

随着线程数增加,IO百分比最后稳定在40%左右,这个数字可以接受

关于“如何实现RocketMQ性能压测分析”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,使各位可以学到更多知识,如果觉得文章不错,请把它分享出去让更多的人看到。

返回云计算教程...