小编给大家分享一下Spark如何安装、配置及基础使用,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!
7. Spark
此主题介绍Spark的安装、配置及基础使用。
Spark基本信息
官网:http://spark.apache.org/
官方教程:http://spark.apache.org/docs/latest/programming-guide.html
7.1. 环境准备
# 切换到工作空间
cd /opt/workspaces
# 创建Spark数据目录
mkdir data/spark
# 创建Spark日志目录
mkdir logs/spark
| 官方教程 http://spark.apache.org/docs/latest/spark-standalone.html |
7.2. 安装
wget http://mirrors.hust.edu.cn/apache/spark/spark-1.6.1/spark-1.6.1-bin-hadoop2.6.tgz
tar -zxf spark-1.6.1-bin-hadoop2.6.tgz
rm -rf spark-1.6.1-bin-hadoop2.6.tgz
mv spark-1.6.1-bin-hadoop2.6 ./frameworks/spark
7.3. 配置(伪分布式)
vi ./frameworks/spark/conf/spark-env.sh
export SPARK_MASTER_IP=bd
export SPARK_MASTER_PORT=7077
export MASTER=spark://${SPARK_MASTER_IP}:${SPARK_MASTER_PORT}
# 指定Spark数据目录
export SPARK_LOCAL_DIRS=/opt/workspaces/data/spark/
# 指定Spark日志目录
export SPARK_LOG_DIR=/opt/workspaces/logs/spark/
# 指定JDK目录
export JAVA_HOME=/opt/env/java
# 指定Scala目录
export SCALA_HOME=/opt/env/scala
7.4. 启动与停止
./frameworks/spark/sbin/start-all.sh
7.5. 测试
# 执行圆周率计算示例
./frameworks/spark/bin/run-example org.apache.spark.examples.SparkPi
./frameworks/spark/bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master spark://bd:6066\
--deploy-mode cluster \
--driver-memory 512M \
--executor-memory 256M \ #如果运行出错请改大些
./frameworks/spark/lib/spark-examples-1.6.1-hadoop2.6.0.jar \
1000
7.6. Word Count
| http://spark.apache.org/docs/latest/quick-start.html |
Word Count
./frameworks/spark/bin/spark-shell
// 基础版
val textFile = sc.textFile("./frameworks/spark/README.md")
val words = textFile.flatMap(line => line.split(" "))
val exchangeVal = words.map(word => (word,1))
val count = exchangeVal.reduceByKey((a,b) => a + b)
count.collect
// 优化版
sc.textFile("./frameworks/spark/README.md").flatMap(_.split(" ")).map((_,1)).reduceByKey(_ + _).collect
// 带排序
sc.textFile("./frameworks/spark/README.md").flatMap(_.split(" ")).map((_,1)).reduceByKey(_ + _).map(_.swap).sortByKey(false).map(_.swap).collect
// 最终版
val wordR="""\w+""".r
sc.textFile("./frameworks/spark/README.md").flatMap(_.split(" ")).filter(wordR.pattern.matcher(_).matches).map((_,1)).reduceByKey(_ + _).map(_.swap).sortByKey(false).map(_.swap).saveAsTextFile("hdfs://bd:9000/wordcount")
| 可以访问 http://<host>:8080 查看作业 |
7.7. 参数说明
Spark properties (Spark属性)在应用程序中通过SparkConf
对象设置,或通过Java系统属性设置。
Environment variables (环境变量)指定各节点的设置,如IP地址、端口,配置文件在conf/spark-env.sh中。
Logging (日志)可以通过log4j.properties配置日志。
在代码中指定配置
val conf = new SparkConf()
// 指定使用2个本地线程来运行,本地模式下,我们可以使用n个线程(n >= 1),但在像Spark Streaming这样的场景下,我们可能需要多个线程
.setMaster("local[2]")
.setAppName("CountingSheep")
val sc = new SparkContext(conf)
在脚本中指定配置
./bin/spark-submit --name "My app" --master local[4] --conf spark.eventLog.enabled=false
--conf "spark.executor.extraJavaOptions=-XX:+PrintGCDetails -XX:+PrintGCTimeStamps" myApp.jar
Table 1. 常用配置
属性名称 | 默认值 | 说明 |
---|
spark.app.name |
| Spark应用的名字 |
spark.driver.cores | 1 | 在cluster模式下运行driver进程的核数 |
spark.driver.memory | 1g | driver进程可以用的内存总量(如:1g,2g),client模式下无效果,必须要在命令行里用 –driver-memory 或者在默认属性配置文件里设置 |
spark.executor.memory | 1g | 单个executor使用的内存总量(如,2g,8g) |
spark.master |
| 集群管理器URL |
环境变量在${SPARK_HOME}/conf/spark-env.sh脚本中设置
Table 2. 常用配置
模式 | 属性名称 | 默认值 | 说明 |
---|
| JAVA_HOME |
| Java安装目录 |
| SCALA_HOME |
| Scala安装目录 |
| SPARK_LOCAL_IP |
| 本地绑定的IP |
| SPARK_LOG_DIR | ${SPARK_HOME}/logs | 日志目录 |
standalone | SPARK_MASTER_IP | (当前IP) | Master IP |
standalone | SPARK_MASTER_PORT | 7077(6066) | Master 端口 |
standalone | MASTER |
| 默认Master URL |
standalone | SPARK_WORKER_CORES | 所有 | 每个节点使用的CPU core上限 |
standalone | SPARK_WORKER_MEMORY | 本节点所有内存减去1GB | 每个节点使用的内存上限 |
standalone | SPARK_WORKER_INSTANCES | 1 | 每个节点启动的worker实例个数 |
standalone | SPARK_WORKER_PORT | 随机 | Worker绑定的端口 |
| 如果你的slave节点性能非常强劲,可以把SPARK_WORKER_INSTANCES 设为大于1;相应的,需要设置SPARK_WORKER_CORES参数限制每个worker实例使用的CPU个数,否则每个worker实例都会使用所有的CPU。 |
日志在${SPARK_HOME}/conf/log4j.properties中设置
使用HDFS时需要从Hadoop中复制hdfs-site.xml、 core-site.xml
到Spark的classpath中
| http://spark.apache.org/docs/latest/configuration.html |
7.8. 资源调度
standalone目前只支持简单的先进先出(FIFO)调度器。这个调度器可以支持多用户,你可以控制每个应用所使用的最大资源。默认情况下,Spark应用会申请集群中所有的CPU。
在代码中限制资源
val conf = new SparkConf()
.setMaster(...)
.setAppName(...)
.set("spark.cores.max", "10")
val sc = new SparkContext(conf)
在配置文件 spark-env.sh
中限制资源
export SPARK_MASTER_OPTS="-Dspark.deploy.defaultCores=<value>"
7.9. 性能调优
| http://spark.apache.org/docs/latest/tuning.html |
7.10. 硬件配置
每个节点:
* 4-8块磁盘
* 8G以上内存
* 千兆网卡
* 8-16核CPU
至少3个节点
| http://spark.apache.org/docs/latest/hardware-provisioning.html |
7.11. 整合Hive
| SPARK_CLASSPATH 有些教程中说要添加 export SPARK_CLASSPATH=$HIVE_HOME/lib/mysql-connector-java-x.jar:$SPARK_CLASSPATH 但目前版本不需要此配置,并且添加上去会导致zeppelin 运行出错: org.apache.spark.SparkException: Found both spark.driver.extraClassPath and SPARK_CLASSPATH. Use only the former. |
复制Hive的几个配置文件
cp ./frameworks/hive/conf/hive-site.xml ./frameworks/spark/conf
cp ./frameworks/hive/conf/hive-log4j.properties ./frameworks/spark/conf
启动thriftserver,用于对外提供JDBC服务
./frameworks/spark/sbin/start-thriftserver.sh
测试连接
./frameworks/spark/bin/beeline
!connect jdbc:hive2://bd:10000
show tables;
以上是“Spark如何安装、配置及基础使用”这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注天达云行业资讯频道!