如何分析spark-submit工具参数
更新:HHH   时间:2023-1-7


这篇文章将为大家详细讲解有关如何分析spark-submit工具参数,文章内容质量较高,因此小编分享给大家做个参考,希望大家阅读完这篇文章后对相关知识有一定的了解。

执行时需要传入的参数说明

Usage: spark-submit [options] <app jar | python file> [app options]

参数名称

含义

--master MASTER_URL

可以是spark://host:port, mesos://host:port, yarn,  yarn-cluster,yarn-client, local

--deploy-mode DEPLOY_MODE

Driver程序运行的地方,client或者cluster

--class CLASS_NAME

主类名称,含包名

--name NAME

Application名称

--jars JARS

Driver依赖的第三方jar包

--py-files PY_FILES

用逗号隔开的放置在Python应用程序PYTHONPATH上的.zip,  .egg, .py文件列表

--files FILES

用逗号隔开的要放置在每个executor工作目录的文件列表

--properties-file FILE

设置应用程序属性的文件路径,默认是conf/spark-defaults.conf

--driver-memory MEM

Driver程序使用内存大小

--driver-java-options


--driver-library-path

Driver程序的库路径

--driver-class-path

Driver程序的类路径

--executor-memory MEM

executor内存大小,默认1G

--driver-cores NUM

Driver程序的使用CPU个数,仅限于Spark Alone模式

--supervise

失败后是否重启Driver,仅限于Spark  Alone模式

--total-executor-cores NUM

executor使用的总核数,仅限于Spark Alone、Spark on Mesos模式

--executor-cores NUM

每个executor使用的内核数,默认为1,仅限于Spark on Yarn模式

--queue QUEUE_NAME

提交应用程序给哪个YARN的队列,默认是default队列,仅限于Spark on Yarn模式

--num-executors NUM

启动的executor数量,默认是2个,仅限于Spark on Yarn模式

--archives ARCHIVES

仅限于Spark on Yarn模式


关于如何分析spark-submit工具参数就分享到这里了,希望以上内容可以对大家有一定的帮助,可以学到更多知识。如果觉得文章不错,可以把它分享出去让更多的人看到。

返回云计算教程...