合并过后的命名空间镜像文件也在从元数据节点保存了一份,以防元数据节点失败的时候,可以恢复。
2.3 元数据节点目录结构
VERSION文件是java properties文件,保存了HDFS的版本号。
namespaceID=1232737062
cTime=0
storageType=NAME_NODE
layoutVersion=-18
2.4 数据节点的目录结构
3、HDFS体系结构
HDFS是一个主/从(Mater/Slave)体系结构,从最终用户的角度来看,它就像传统的文件系统一样,可以通过目录路径对文件执行CRUD(Create、Read、Update和Delete)操作。但由于分布式存储的性质,HDFS集群拥有一个NameNode和一些DataNode。NameNode管理文件系统的元数据,DataNode存储实际的数据。客户端通过同NameNode和DataNodes的交互访问文件系统。客户端联系NameNode以获取文件的元数据,而真正的文件I/O操作是直接和DataNode进行交互的。
图5-1-1 列出HDFS文件
2)列出HDFS目录下某个文档中的文件
此处为你展示如何通过"-ls 文件名"命令浏览HDFS下名为"input"的文档中文件:
hadoop fs –ls input
执行结果如图5-1-2所示。
图5-1-3 成功上传file到HDFS
4)将HDFS中文件复制到本地系统中
此处为你展示如何通过"-get 文件1 文件2"命令将HDFS中的"output"文件复制到本地系统并命名为"getout"。
hadoop fs –get output getout
执行结果如图5-1-4所示。
图5-1-5 成功删除HDFS下的newoutput文档
6)查看HDFS下某个文件
此处为你展示如何通过"-cat 文件"命令查看HDFS下input文件中内容:
hadoop fs -cat input/*
执行结果如图5-1-6所示。
图5-2-1 HDFS基本统计信息
2)退出安全模式
NameNode在启动时会自动进入安全模式。安全模式是NameNode的一种状态,在这个阶段,文件系统不允许有任何修改。安全模式的目的是在系统启动时检查各个DataNode上数据块的有效性,同时根据策略对数据块进行必要的复制或删除,当数据块最小百分比数满足的最小副本数条件时,会自动退出安全模式。
系统显示"Name node is in safe mode",说明系统正处于安全模式,这时只需要等待17秒即可,也可以通过下面的命令退出安全模式:
hadoop dfsadmin –safemode enter
成功退出安全模式结果如图5-2-2所示。
图5-2-3 进入HDFS安全模式
4)添加节点
可扩展性是HDFS的一个重要特性,向HDFS集群中添加节点是很容易实现的。添加一个新的DataNode节点,首先在新加节点上安装好Hadoop,要和NameNode使用相同的配置(可以直接从NameNode复制),修改"/usr/hadoop/conf/master"文件,加入NameNode主机名。然后在NameNode节点上修改"/usr/hadoop/conf/slaves"文件,加入新节点主机名,再建立到新加点无密码的SSH连接,运行启动命令:
start-all.sh
5)负载均衡
HDFS的数据在各个DataNode中的分布肯能很不均匀,尤其是在DataNode节点出现故障或新增DataNode节点时。新增数据块时NameNode对DataNode节点的选择策略也有可能导致数据块分布的不均匀。用户可以使用命令重新平衡DataNode上的数据块的分布:
start-balancer.sh
执行命令前,DataNode节点上数据分布情况如图5-2-4所示。
执行负载均衡命令如图5-2-6所示。
图6-1-1 运行结果(1)
2)项目浏览器
图6-1-3 运行结果(3)
6.2 创建HDFS文件
通过"FileSystem.create(Path f)"可在HDFS上创建文件,其中f为文件的完整路径。具体实现如下:
package com.hebut.file;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataOutputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
public class CreateFile {
public static void main(String[] args) throws Exception {
Configuration conf=new Configuration();
FileSystem hdfs=FileSystem.get(conf);
byte[] buff="hello hadoop world!\n".getBytes();
Path dfs=new Path("/test");
FSDataOutputStream outputStream=hdfs.create(dfs);
outputStream.write(buff,0,buff.length);
}
}
运行结果如图6-2-1和图6-2-2所示。
1)项目浏览器
图6-2-2 运行结果(2)
6.3 创建HDFS目录
通过"FileSystem.mkdirs(Path f)"可在HDFS上创建文件夹,其中f为文件夹的完整路径。具体实现如下:
package com.hebut.dir;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
public class CreateDir {
public static void main(String[] args) throws Exception{
Configuration conf=new Configuration();
FileSystem hdfs=FileSystem.get(conf);
Path dfs=new Path("/TestDir");
hdfs.mkdirs(dfs);
}
}
运行结果如图6-3-1和图6-3-2所示。
1)项目浏览器
图6-3-2 运行结果(2)
6.4 重命名HDFS文件
通过"FileSystem.rename(Path src,Path dst)"可为指定的HDFS文件重命名,其中src和dst均为文件的完整路径。具体实现如下:
package com.hebut.file;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
public class Rename{
public static void main(String[] args) throws Exception {
Configuration conf=new Configuration();
FileSystem hdfs=FileSystem.get(conf);
Path frpaht=new Path("/test"); //旧的文件名
Path topath=new Path("/test1"); //新的文件名
boolean isRename=hdfs.rename(frpaht, topath);
String result=isRename?"成功":"失败";
System.out.println("文件重命名结果为:"+result);
}
}
运行结果如图6-4-1和图6-4-2所示。
1)项目浏览器
图6-4-2 运行结果(2)
6.5 删除HDFS上的文件
通过"FileSystem.delete(Path f,Boolean recursive)"可删除指定的HDFS文件,其中f为需要删除文件的完整路径,recuresive用来确定是否进行递归删除。具体实现如下:
package com.hebut.file;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
public class DeleteFile {
public static void main(String[] args) throws Exception {
Configuration conf=new Configuration();
FileSystem hdfs=FileSystem.get(conf);
Path delef=new Path("/test1");
boolean isDeleted=hdfs.delete(delef,false);
//递归删除
//boolean isDeleted=hdfs.delete(delef,true);
System.out.println("Delete?"+isDeleted);
}
}
运行结果如图6-5-1和图6-5-2所示。
1)控制台结果
图6-5-2 运行结果(2)
6.6 删除HDFS上的目录
同删除文件代码一样,只是换成删除目录路径即可,如果目录下有文件,要进行递归删除。
6.7 查看某个HDFS文件是否存在
通过"FileSystem.exists(Path f)"可查看指定HDFS文件是否存在,其中f为文件的完整路径。具体实现如下:
package com.hebut.file;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
public class CheckFile {
public static void main(String[] args) throws Exception {
Configuration conf=new Configuration();
FileSystem hdfs=FileSystem.get(conf);
Path findf=new Path("/test1");
boolean isExists=hdfs.exists(findf);
System.out.println("Exist?"+isExists);
}
}
运行结果如图6-7-1和图6-7-2所示。
1)控制台结果
图6-7-2 运行结果(2)
6.8 查看HDFS文件的最后修改时间
通过"FileSystem.getModificationTime()"可查看指定HDFS文件的修改时间。具体实现如下:
package com.hebut.file;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileStatus;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
public class GetLTime {
public static void main(String[] args) throws Exception {
Configuration conf=new Configuration();
FileSystem hdfs=FileSystem.get(conf);
Path fpath =new Path("/user/hadoop/test/file1.txt");
FileStatus fileStatus=hdfs.getFileStatus(fpath);
long modiTime=fileStatus.getModificationTime();
System.out.println("file1.txt的修改时间是"+modiTime);
}
}
运行结果如图6-8-1所示。
图6-9-1 运行结果(1)
2)项目浏览器
图6-10-1 运行结果(1)
2)项目浏览器
图6-11-1 控制台结果
7、HDFS的读写数据流
7.1 文件的读取剖析
写入文件的过程比读取较为复杂:
1)解释一
2)解释二
使用HDFS提供的客户端开发库,向远程的Namenode发起RPC请求;
Namenode会检查要创建的文件是否已经存在,创建者是否有权限进行操作,成功则会为文件创建一个记录,否则会让客户端抛出异常;
当客户端开始写入文件的时候,开发库会将文件切分成多个packets,并在内部以"data queue"的形式管理这些packets,并向Namenode申请新的blocks,获取用来存储replicas的合适的datanodes列表,列表的大小根据在Namenode中对replication的设置而定。
开始以pipeline(管道)的形式将packet写入所有的replicas中。开发库把packet以流的方式写入第一个datanode,该datanode把该packet存储之后,再将其传递给在此pipeline中的下一个datanode,直到最后一个datanode,这种写数据的方式呈流水线的形式。
最后一个datanode成功存储之后会返回一个ack packet,在pipeline里传递至客户端,在客户端的开发库内部维护着"ack queue",成功收到datanode返回的ack packet后会从"ack queue"移除相应的packet。
如果传输过程中,有某个datanode出现了故障,那么当前的pipeline会被关闭,出现故障的datanode会从当前的pipeline中移除,剩余的block会继续剩下的datanode中继续以pipeline的形式传输,同时Namenode会分配一个新的datanode,保持replicas设定的数量。
关闭pipeline,将ack queue中的数据块放入data queue的开始。
当前的数据块在已经写入的数据节点中被元数据节点赋予新的标示,则错误节点重启后能够察觉其数据块是过时的,会被删除。
失败的数据节点从pipeline中移除,另外的数据块则写入pipeline中的另外两个数据节点。
元数据节点则被通知此数据块是复制块数不足,将来会再创建第三份备份。
客户端调用create()来创建文件
DistributedFileSystem用RPC调用元数据节点,在文件系统的命名空间中创建一个新的文件。
元数据节点首先确定文件原来不存在,并且客户端有创建文件的权限,然后创建新文件。
DistributedFileSystem返回DFSOutputStream,客户端用于写数据。
客户端开始写入数据,DFSOutputStream将数据分成块,写入data queue。
Data queue由Data Streamer读取,并通知元数据节点分配数据节点,用来存储数据块(每块默认复制3块)。分配的数据节点放在一个pipeline里。
Data Streamer将数据块写入pipeline中的第一个数据节点。第一个数据节点将数据块发送给第二个数据节点。第二个数据节点将数据发送给第三个数据节点。
DFSOutputStream为发出去的数据块保存了ack queue,等待pipeline中的数据节点告知数据已经写入成功。
如果数据节点在写入的过程中失败:
当客户端结束写入数据,则调用stream的close函数。此操作将所有的数据块写入pipeline中的数据节点,并等待ack queue返回成功。最后通知元数据节点写入完毕。
使用HDFS提供的客户端开发库,向远程的Namenode发起RPC请求;
Namenode会视情况返回文件的部分或者全部block列表,对于每个block,Namenode都会返回有该block拷贝的datanode地址;
客户端开发库会选取离客户端最接近的datanode来读取block;
读取完当前block的数据后,关闭与当前的datanode连接,并为读取下一个block寻找最佳的datanode;
当读完列表的block后,且文件读取还没有结束,客户端开发库会继续向Namenode获取下一批的block列表。
读取完一个block都会进行checksum验证,如果读取datanode时出现错误,客户端会通知Namenode,然后再从下一个拥有该block拷贝的datanode继续读。
客户端(client)用FileSystem的open()函数打开文件。
DistributedFileSystem用RPC调用元数据节点,得到文件的数据块信息。
对于每一个数据块,元数据节点返回保存数据块的数据节点的地址。
DistributedFileSystem返回FSDataInputStream给客户端,用来读取数据。
客户端调用stream的read()函数开始读取数据。
DFSInputStream连接保存此文件第一个数据块的最近的数据节点。
Data从数据节点读到客户端(client)。
当此数据块读取完毕时,DFSInputStream关闭和此数据节点的连接,然后连接此文件下一个数据块的最近的数据节点。
当客户端读取完毕数据的时候,调用FSDataInputStream的close函数。
在读取数据的过程中,如果客户端在与数据节点通信出现错误,则尝试连接包含此数据块的下一个数据节点。
失败的数据节点将被记录,以后不再连接。
利用SequenceFile、MapFile、Har等方式归档小文件,这个方法的原理就是把小文件归档起来管理,HBase就是基于此的。对于这种方法,如果想找回原来的小文件内容,那就必须得知道与归档文件的映射关系。
横向扩展,一个Hadoop集群能管理的小文件有限,那就把几个Hadoop集群拖在一个虚拟服务器后面,形成一个大的Hadoop集群。google也是这么干过的。
多Master设计,这个作用显而易见了。正在研发中的GFS II也要改为分布式多Master设计,还支持Master的Failover,而且Block大小改为1M,有意要调优处理小文件啊。
附带个Alibaba DFS的设计,也是多Master设计,它把Metadata的映射存储和管理分开了,由多个Metadata存储节点和一个查询Master节点组成。
Client向NameNode发起文件读取的请求。
NameNode返回文件存储的DataNode的信息。
Client读取文件信息。
Client向NameNode发起文件写入的请求。
NameNode根据文件大小和文件块配置情况,返回给Client它所管理部分DataNode的信息。
Client将文件划分为多个Block,根据DataNode的地址信息,按顺序写入到每一个DataNode块中。
NameNode可以看作是分布式文件系统中的管理者,主要负责管理文件系统的命名空间、集群配置信息和存储块的复制等。NameNode会将文件系统的Meta-data存储在内存中,这些信息主要包括了文件信息、每一个文件对应的文件块的信息和每一个文件块在DataNode的信息等。
DataNode是文件存储的基本单元,它将Block存储在本地文件系统中,保存了Block的Meta-data,同时周期性地将所有存在的Block信息发送给NameNode。
Client就是需要获取分布式文件系统文件的应用程序。
从元数据节点通知元数据节点生成新的日志文件,以后的日志都写到新的日志文件中。
从元数据节点用http get从元数据节点获得fsimage文件及旧的日志文件。
从元数据节点将fsimage文件加载到内存中,并执行日志文件中的操作,然后生成新的fsimage文件。
从元数据节点奖新的fsimage文件用http post传回元数据节点
元数据节点可以将旧的fsimage文件及旧的日志文件,换为新的fsimage文件和新的日志文件(第一步生成的),然后更新fstime文件,写入此次checkpoint的时间。
这样元数据节点中的fsimage文件保存了最新的checkpoint的元数据信息,日志文件也重新开始,不会变的很大了。
当文件系统客户端(client)进行写操作时,首先把它记录在修改日志中(edit log)
元数据节点在内存中保存了文件系统的元数据信息。在记录了修改日志后,元数据节点则修改内存中的数据结构。
每次的写操作成功之前,修改日志都会同步(sync)到文件系统。
fsimage文件,也即命名空间映像文件,是内存中的元数据在硬盘上的checkpoint,它是一种序列化的格式,并不能够在硬盘上直接修改。
同数据的机制相似,当元数据节点失败时,则最新checkpoint的元数据信息从fsimage加载到内存中,然后逐一重新执行修改日志中的操作。
从元数据节点就是用来帮助元数据节点将内存中的元数据信息checkpoint到硬盘上的
checkpoint的过程如下:
blk_<id>保存的是HDFS的数据块,其中保存了具体的二进制数据。
blk_<id>.meta保存的是数据块的属性信息:版本信息,类型信息,和checksum
当一个目录中的数据块到达一定数量的时候,则创建子文件夹来保存数据块及数据块属性信息。
数据节点的VERSION文件格式如下:
layoutVersion是一个负整数,保存了HDFS的持续化在硬盘上的数据结构的格式版本号。
namespaceID是文件系统的唯一标识符,是在文件系统初次格式化时生成的。
cTime此处为0
storageType表示此文件夹中保存的是元数据节点的数据结构。