hive中有哪些基础执行语句
更新:HHH   时间:2023-1-7


小编给大家分享一下hive中有哪些基础执行语句,希望大家阅读完这篇文章之后都有所收获,下面让我们一起去探讨吧!

hive简单概念

hive是一种基于Hadoop的数据仓库的处理工具,目前只支持简单的类似传统关系型数据库的SQL查询,修改操作功能,他可以直接将SQL转化为MapReduce程序,开发人员不必一定要学会写MR程序,提高了开发效率。

例子:基于mysql存储的hive环境,hive元数据(hive相关表,表的各个字段属性等信息)存放在mysql数据库中,mysql数据存放在hdfs默认是/user/hive/warehouse/hive.db中

ddl 语句

mysql作为元数据存储 数据库(hive)结构目录

创建表

hive> create table test (id int, name string);

引入分区的概念,因为hive 中的select 一般会扫描整个表,这样会浪费很多时间,所以引入分区的概念

hive> create table test2 (id int, name string) partitioned by (ds string);

浏览表

hive>show tables;

引入正则表达式 类似like的功能

hive>show tables '.*t'

查看数据结构

hive> DESCRIBE test;或desc test;

修改或删除表

hive>alter table test rename to test3;

hive>alter table add columns (new_column type comment '注释')

hive>drop table test;
DML操作语句

1、倒入数据

LOAD DATA LOCAL INPATH '/home/hadoop/test.txt' OVERWRITE INTO TABLE test;

local 表示执行本地,如果去掉默认是取hdfs上的文件,overwrite表示导入数据覆盖,如果去掉表示append

2、执行查询

select * from test2 where test2.ds='2014-08-26'

3、值得注意的是 select count(*) from test 与我们平时关系型数据库记录查询操作不同,他执行的是一个mr

hive> select count(*) from test2;
Total MapReduce jobs = 1
Launching Job 1 out of 1
Number of reduce tasks determined at compile time: 1
In order to change the average load for a reducer (in bytes):
set hive.exec.reducers.bytes.per.reducer=<number>
In order to limit the maximum number of reducers:
set hive.exec.reducers.max=<number>
In order to set a constant number of reducers:
set mapred.reduce.tasks=<number>
Starting Job = job_1411720827309_0004, Tracking URL = http://master:8031/proxy/application_1411720827309_0004/
Kill Command = /usr/local/cloud/hadoop/bin/hadoop job -kill job_1411720827309_0004
Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 1
Stage-1 map = 0%, reduce = 0%
Stage-1 map = 100%, reduce = 0%, Cumulative CPU 0.93 sec
Stage-1 map = 100%, reduce = 0%, Cumulative CPU 0.93 sec
Stage-1 map = 100%, reduce = 0%, Cumulative CPU 0.93 sec
Stage-1 map = 100%, reduce = 0%, Cumulative CPU 0.93 sec
Stage-1 map = 100%, reduce = 0%, Cumulative CPU 0.93 sec
Stage-1 map = 100%, reduce = 0%, Cumulative CPU 0.93 sec
Stage-1 map = 100%, reduce = 0%, Cumulative CPU 0.93 sec
Stage-1 map = 100%, reduce = 0%, Cumulative CPU 0.93 sec
Stage-1 map = 100%, reduce = 100%, Cumulative CPU 2.3 sec
Stage-1 map = 100%, reduce = 100%, Cumulative CPU 2.3 sec
MapReduce Total cumulative CPU time: 2 seconds 300 msec
Ended Job = job_1411720827309_0004
MapReduce Jobs Launched:
Job 0: Map: 1 Reduce: 1 Cumulative CPU: 2.3 sec HDFS Read: 245 HDFS Write: 2 SUCCESS
Total MapReduce CPU Time Spent: 2 seconds 300 msec
OK
3
Time taken: 27.508 seconds, Fetched: 1 row(s)

看完了这篇文章,相信你对“hive中有哪些基础执行语句”有了一定的了解,如果想了解更多相关知识,欢迎关注天达云行业资讯频道,感谢各位的阅读!

返回云计算教程...