这篇文章主要讲解了Opencv中判断图片里某个颜色值占的比例的方法,内容清晰明了,对此有兴趣的小伙伴可以学习一下,相信大家阅读完之后会有帮助。
一、功能
这里的需求是,判断摄像头有没有被物体遮挡。这里只考虑用手遮挡---->判断黑色颜色的范围。
二、使用OpenCV的Mat格式图片遍历图片
下面代码里,传入的图片的尺寸是640*480,判断黑色范围。
/*
在图片里查找指定颜色的比例
*/
int Widget::Mat_color_Find(QImage qimage)
{
Mat image = QImage2cvMat(qimage);//将图片加载进来
int num = 0;//记录颜色的像素点
float rate;//要计算的百分率
//遍历图片的每一个像素点
for(int i = 0; i < image.rows;i++) //行数
{
for(int j = 0; j <image.cols;j++) //列数
{
//对该像素是否为指定颜色进行判断 BGR 像素点
//OpenCV 中 MAT类的默认三原色通道顺序BGR
/*
动态地址访问像素语法:image.at<Vec3b>(i,j)[0]、image.at<uchar>(i, j)
访问三通道图像的单个像素:
int b = image.at<Vec3b>(i, j)[0];
int g = image.at<Vec3b>(i, j)[1];
int r = image.at<Vec3b>(i, j)[2];
对于三通道图像,每个像素存储了三个值,分别为蓝色、绿色、红色通道上的数值。
int gray_data = image.at<uchar>(i, j);
用来访问灰度图像的单个像素。对于灰度图像,每个像素只存储一个值
*/
if((image.at<Vec3b>(i, j)[0] <= 120 &&
image.at<Vec3b>(i, j)[1] <= 120 &&
image.at<Vec3b>(i, j)[2] <= 120))
{
num++;
}
}
}
rate = (float)num / (float)(image.rows * image.cols);
//阀值为 0.249255 表示为全黑
if(rate>0.20)
{
qDebug()<<":Mat:故意遮挡摄像头";
}
qDebug()<<"Mat:比例"<<rate;
return 0;
}
Mat Widget::QImage2cvMat(QImage image)
{
Mat mat;
switch(image.format())
{
case QImage::Format_ARGB32:
case QImage::Format_RGB32:
case QImage::Format_ARGB32_Premultiplied:
mat = Mat(image.height(), image.width(), CV_8UC4, (void*)image.constBits(), image.bytesPerLine());
break;
case QImage::Format_RGB888:
mat = Mat(image.height(), image.width(), CV_8UC3, (void*)image.constBits(), image.bytesPerLine());
cvtColor(mat, mat, CV_BGR2RGB);
break;
case QImage::Format_Indexed8:
mat = Mat(image.height(), image.width(), CV_8UC1, (void*)image.constBits(), image.bytesPerLine());
break;
}
return mat;
}
三、使用QImage遍历像素点
/*
在图片里查找指定颜色的比例
*/
int Widget::qimage_color_Find(QImage qimage)
{
int num = 0;//记录颜色的像素点
float rate;//要计算的百分率
quint8 r,g,b;
//遍历图片的每一个像素点
for(int i = 0; i < qimage.height();i++) //行数
{
for(int j = 0; j <qimage.width();j++) //列数
{
QRgb rgb=qimage.pixel(j,i);
r=qRed(rgb);
g=qGreen(rgb);
b=qBlue(rgb);
if((r <= 120 && g <= 120 && b <= 120))
{
num++;
}
}
}
rate = (float)num / (float)(qimage.height() * qimage.width());
//阀值为 0.99777 表示为全黑
if(rate>0.60)
{
//qDebug()<<"qimage:故意遮挡摄像头";
}
qDebug()<<"qimage:比例:"<<rate;
return 0;
}
补充知识:判断一批图片中含有某中颜色物体的图片个数占总图片的比例
最近在做一个语义分割项目,使用Label工具进行了类别的标注.然后不同类别生成了不同的颜色,如需要代码可以参考.后来我想统计一下含有一种类别的图片和含有两种类别的图片占总图片的比例,下面是我的代码:
代码思路:
1)循环读取文件夹中的图片
2)循环读取图片的每一个像素点,当图片的像素点和你检测的物体像素点一致时,对应类别加1.
3)读取完图片后计算每一类的比例.
import cv2
import os
import matplotlib.pyplot as plt
picture_path="/home/wsb/桌面/picture"
picture_list=os.listdir(picture_path)
total_picture=len(picture_list)
total=total_picture
per=[]
number=0#图片中道路类型为1的个数
number1=0#一种道路类型并且比例小于0.0638的个数
number2=0
for item in picture_list:
src = os.path.join(os.path.abspath(picture_path), item)
print("start: %s "%item)
total_picture-=1
mat=cv2.imread(src)
height=mat.shape[0]
width=mat.shape[1]
ground=0
zero=0
one=0
two=0
three=0
four=0
five=0
six=0
seven=0
eight=0
rateground=0
rate0=0
rate1=0
rate2=0
rate3=0
rate4=0
rate5=0
rate6=0
rate7=0
rate8=0
rate=0
road_type=0
for i in range(height):
for j in range(width):
# print("r:%s"%mat[i][j][0])
# print("r:%s"%mat[i][j][1])
# print("r:%s"%mat[i][j][2])
'''
我这里共有9种分类情况,况且我已知道每一种颜色的具体rgb值,我将它们作为我的判断条件
如不你不知道可以在网上查找自己想查看比例的rgb值或者范围
'''
if mat[i][j][0]==0 and mat[i][j][1]==0 and mat[i][j][2]==0:
ground+=1
elif mat[i][j][0]==128 and mat[i][j][1]==0 and mat[i][j][2]==0:
zero+=1
elif mat[i][j][0]==0 and mat[i][j][1]==128 and mat[i][j][2]==0:
one+=1
elif mat[i][j][0]==128 and mat[i][j][1]==128 and mat[i][j][2]==0:
two+=1
elif mat[i][j][0]==0 and mat[i][j][1]==0 and mat[i][j][2]==128:
three+=1
elif mat[i][j][0]==128 and mat[i][j][1]==0 and mat[i][j][2]==128:
four+=1
elif mat[i][j][0]==0 and mat[i][j][1]==128 and mat[i][j][2]==128:
five+=1
elif mat[i][j][0]==128 and mat[i][j][1]==128 and mat[i][j][2]==128:
six+=1
elif mat[i][j][0]==0 and mat[i][j][1]==0 and mat[i][j][2]==64:
seven+=1
elif mat[i][j][0]==0 and mat[i][j][1]==0 and mat[i][j][2]==192:
eight+=1
else:
print("输入正确的图片,或者更改上面判断条件的像素值")
rateground=ground/(height*width)
rate0=zero/(height*width)
if rate0!=0:
road_type+=1
rate1=one/(height*width)
if rate1!=0:
road_type+=1
rate2=two/(height*width)
if rate2!=0:
road_type+=1
rate3=three/(height*width)
if rate3!=0:
road_type+=1
rate4=four/(height*width)
if rate4!=0:
road_type+=1
rate5=five/(height*width)
if rate5!=0:
road_type+=1
rate6=six/(height*width)
if rate6!=0:
road_type+=1
rate7=seven/(height*width)
if rate7!=0:
road_type+=1
rate8=eight/(height*width)
if rate8!=0:
road_type+=1
rate=rate0+rate1+rate2+rate3+rate4+rate5+rate6+rate7+rate8
per.append(rate)
if road_type==1:
number+=1
if rate<0.0638:
number1+=1#一种类型道路并且所占比例小于0.0638的情况
else:
if rate<0.532:
number2+=1#两种道路类型,并且正确正确道路类型所占比例小于0.532时的个数
print("the remaining %d"%total_picture)
A=number/total#图片中道路类型大于1种的概率
A1=number1/total#图片中一种道路类型并且比例小于0.0638的概率
A2=number2/total#图片中有两种道路,并且一种道路所占比例小于0.532时的概率
print("A1:%s"%A1)
print("the precentage of one road is %s"%A)
print("the precentage of two road is %s"%(1-A))
print("A2:%s"%A2)
plt.plot(per)
plt.ylabel('the percentage of road')
plt.show()
看完上述内容,是不是对Opencv中判断图片里某个颜色值占的比例的方法有进一步的了解,如果还想学习更多内容,欢迎关注天达云行业资讯频道。