今天小编给大家分享一下python多线程性能测试之快速mock数据测试分析的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我们一起来了解一下吧。
安装相关类包
pip install kafka
pip install appmetrics
pip install faker
pip install pykafka
快速 mock kafka 批量测试数据
# -* coding:utf8 *-
from pykafka import KafkaClient
import uuid
import time
import threading
from appmetrics import metrics
from faker import Faker
import os
fake = Faker("zh-cn")
PATH = lambda p: os.path.abspath(
os.path.join(os.path.dirname(__file__), p)
)
meter = metrics.new_meter("meter_test")
host_producer = 'host地址'
def data_info():
uid = str(uuid.uuid4())
suid = ''.join(uid.split('-'))
return suid
def data_result():
#数据格式可自行定义
data = f"{data_info()},{fake.phone_number()},111111111111,LOL-UZI"
return data
def mock_request():
client_producer = KafkaClient(hosts=host_producer)
topicdocu = client_producer.topics['XXXXXXX-TOPIC']
producer = topicdocu.get_producer(sync=False) # sync=False 关闭同步,使用异步
while True:
data_uni = data_result()
producer.produce(bytes(data_uni, encoding='utf-8'))
meter.notify(1) # 请求一次 记录器打点一次
# i = i - 1
producer.stop()
def print_meter():
while True:
print(meter.get())
time.sleep(1)
def thread_request(nums):
t1 = []
for i in range(nums):
if i == 0:
#该线程是为了记录每秒打点作用
t = threading.Thread(target=print_meter, name="T" + str(i))
else:
t = threading.Thread(target=mock_request, name="T" + str(i))
t.setDaemon(True)
t1.append(t)
for t in t1:
t.start()
for t in t1:
t.join()
#
#
if __name__ == '__main__':
thread_request(101)
appmetrics 使用方法
Meters
Meters,度量一系列事件发生的速率 (rate),例如 TPS。Meters 会统计最近 1 分钟,5 分钟,15 分钟,还有全部时间的速率。
meter = metrics.new_meter(“meter_test”)
meter.notify(1)
meter.notify(1)
meter.notify(3)
meter.get()
返回结果:
{'count': 5, 'kind': 'meter', 'five': 0.0066114184713530035, 'mean': 0.27743058841197027, 'f
以上就是“python多线程性能测试之快速mock数据测试分析”这篇文章的所有内容,感谢各位的阅读!相信大家阅读完这篇文章都有很大的收获,小编每天都会为大家更新不同的知识,如果还想学习更多的知识,请关注天达云行业资讯频道。