在R语言中实现左连接的方法有哪些
更新:HHH   时间:2023-1-7


这篇文章将为大家详细讲解有关在R语言中实现左连接的方法有哪些,文章内容质量较高,因此小编分享给大家做个参考,希望大家阅读完这篇文章后对相关知识有一定的了解。

法一:

> data0 <- merge(a,c,all.x=TRUE,by='CELLPHONE')

法二:

> data1 <- sqldf('select a.*,b.* from a left join c on a.CELLPHONE=c.CELLPHONE')

法三:

> data2 <- c[a,on='CELLPHONE']

注意:第三种方法的顺序不能写反了。

补充:R语言中的inner_join, full_join, left_join, right_join

在R for Data Science中,作者用了非常直观的例子解释了上面的四个概念。说明如下:

我们的数据集是这样的:

x <- tribble(
 ~key, ~val_x,
 1, "x1",
 2, "x2",
 3, "x3"
)
y <- tribble(
 ~key, ~val_y,
 1, "y1",
 2, "y2",
 4, "y3"
)

可以看出,x与y的key都有1,2,但是x的key里面有3,y的key里面有4.

下面我们来看这四个概念:

1. inner_join

x %>%
 inner_join(y, by = "key")

其结果是

key val_x val_y
 <dbl> <chr> <chr>
   1 x1  y1  
   2 x2  y2

可以看出,此时基于key的连接只保留了共同的key值1与2对应的数据;

2. full_join

x %>%
 full_join(y, by = "key")

其结果是

key val_x val_y
 <dbl> <chr> <chr>
 1 x1  y1  
 2 x2  y2  
 3 x3  NA  
 4 NA  y3

可以看出,此时基于key的连接保留了所有key值对应的数据,当相应的值不存在的时候,用NA代替;

3. left_join

x %>%
 left_join(y, by = "key")

此时的结果为

<dbl> <chr> <chr>
  1 x1  y1  
  2 x2  y2  
  3 x3  NA

可以看出, 此时基于key的连接只保留了x对应的key值的数据,当相应的值不存在的时候,用NA代替;

4. right_join

x %>%
 right_join(y, by = "key")

此时的结果为

key val_x val_y
 <dbl> <chr> <chr>
1 x1  y1  
2 x2  y2  
4 NA  y3

关于在R语言中实现左连接的方法有哪些就分享到这里了,希望以上内容可以对大家有一定的帮助,可以学到更多知识。如果觉得文章不错,可以把它分享出去让更多的人看到。

返回开发技术教程...