Dropout在预测中是不是仍要继续发挥作用
更新:HHH   时间:2023-1-7


小编给大家分享一下Dropout在预测中是不是仍要继续发挥作用,希望大家阅读完这篇文章后大所收获,下面让我们一起去探讨吧!

因为需要,要重写训练好的keras模型,虽然只具备预测功能,但是发现还是有很多坑要趟过。其中Dropout这个坑,我记忆犹新。

一开始,我以为预测时要保持和训练时完全一样的网络结构,也就是预测时用的网络也是有丢弃的网络节点,但是这样想就掉进了一个大坑!因为无法通过已经训练好的模型,来获取其训练时随机丢弃的网络节点是那些,这本身就根本不可能。

更重要的是:我发现每一个迭代周期丢弃的神经元也不完全一样。

假若迭代500次,网络共有1000个神经元, 在第n(1<= n <500)个迭代周期内,从1000个神经元里随机丢弃了200个神经元,在n+1个迭代周期内,会在这1000个神经元里(不是在剩余得800个)重新随机丢弃200个神经元。

训练过程中,使用Dropout,其实就是对部分权重和偏置在某次迭代训练过程中,不参与计算和更新而已,并不是不再使用这些权重和偏置了(预测时,会使用全部的神经元,包括使用训练时丢弃的神经元)。

也就是说在预测过程中完全没有Dropout什么事了,他只是在训练时有用,特别是针对训练集比较小时防止过拟合非常有用。

补充知识:TensorFlow直接使用ckpt模型predict不用restore

我就废话不多说了,大家还是直接看代码吧~

# -*- coding: utf-8 -*-
# from util import *
import cv2
import numpy as np
import tensorflow as tf
# from tensorflow.python.framework import graph_util
import os

os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
image_path = './8760.pgm'

input_checkpoint = './model/xu_spatial_model_1340.ckpt'

sess = tf.Session()
saver = tf.train.import_meta_graph(input_checkpoint + '.meta')
saver.restore(sess, input_checkpoint)

# input:0作为输入图像,keep_prob:0作为dropout的参数,测试时值为1,is_training:0训练参数
input_image_tensor = sess.graph.get_tensor_by_name("coef_input:0")
is_training = sess.graph.get_tensor_by_name('is_training:0')
batch_size = sess.graph.get_tensor_by_name('batch_size:0')
# 定义输出的张量名称
output_tensor_name = sess.graph.get_tensor_by_name("xuNet/logits:0") # xuNet/Logits/logits
image = cv2.imread(image_path, 0)
# 读取测试图片
out = sess.run(output_tensor_name, feed_dict={input_image_tensor: np.reshape(image, (1, 512, 512, 1)),
                       is_training: False,
                       batch_size: 1})
print(out)

ckpt模型中的所有节点名称,可以这样查看

[n.name for n in tf.get_default_graph().as_graph_def().node]

看完了这篇文章,相信你对Dropout在预测中是不是仍要继续发挥作用有了一定的了解,想了解更多相关知识,欢迎关注天达云行业资讯频道,感谢各位的阅读!

返回开发技术教程...