这期内容当中小编将会给大家带来有关python中怎么使用theano库实现线性回归,文章内容丰富且以专业的角度为大家分析和叙述,阅读完这篇文章希望大家可以有所收获。
代码块
import numpy as np
import theano.tensor as T
import theano
import time
class Linear_Reg(object):
def __init__(self,x):
self.a = theano.shared(value = np.zeros((1,), dtype=theano.config.floatX),name = 'a')
self.b = theano.shared(value = np.zeros((1,),
dtype=theano.config.floatX),name = 'b')
self.result = self.a * x + self.b
self.params = [self.a,self.b]
def msl(self,y):
return T.mean((y - self.result)**2)
def regrun(rate,data,labels):
X = theano.shared(np.asarray(data,
dtype=theano.config.floatX),borrow = True)
Y = theano.shared(np.asarray(labels,
dtype=theano.config.floatX),borrow = True)
index = T.lscalar() #定义符号化的公式
x = T.dscalar('x') #定义符号化的公式
y = T.dscalar('y') #定义符号化的公式
reg = Linear_Reg(x = x)
cost = reg.msl(y)
a_g = T.grad(cost = cost,wrt = reg.a) #计算梯度
b_g = T.grad(cost = cost, wrt = reg.b) #计算梯度
updates=[(reg.a,reg.a - rate * a_g),(reg.b,reg.b - rate * b_g)] #更新参数
train_model = theano.function(inputs=[index], outputs = reg.msl(y),updates = updates,givens = {x:X[index], y:Y[index]})
done = True
err = 0.0
count = 0
last = 0.0
start_time = time.clock()
while done:
#err_s = [train_model(i) for i in xrange(data.shape[0])]
for i in xxx:
err_s = [train_model(i) ]
err = np.mean(err_s)
#print err
count = count + 1
if count > 10000 or err <0.1:
done = False
last = err
end_time = time.clock()
print 'Total time is :',end_time -start_time,' s' # 5.12s
print 'last error :',err
print 'a value : ',reg.a.get_value() # [ 2.92394467]
print 'b value : ',reg.b.get_value() # [ 1.81334458]
if __name__ == '__main__':
rate = 0.01
data = np.linspace(1,10,10)
labels = data * 3 + np.ones(data.shape[0],dtype=np.float64) +np.random.rand(data.shape[0])
regrun(rate,data,labels)
上述就是小编为大家分享的python中怎么使用theano库实现线性回归了,如果刚好有类似的疑惑,不妨参照上述分析进行理解。如果想知道更多相关知识,欢迎关注天达云行业资讯频道。