怎么在python中使用opencv对目录中的图片去重?针对这个问题,这篇文章详细介绍了相对应的分析和解答,希望可以帮助更多想解决这个问题的小伙伴找到更简单易行的方法。
版本:
平台:ubuntu 14 / I5 / 4G内存
python版本:python2.7
opencv版本:2.13.4
依赖:
如果系统没有python,则需要进行安装
sudo apt-get install python
sudo apt-get install python-dev
sudo apt-get install python-pip
sudo pip install numpy mathplotlib
sudo apt-get install libcv-dev
sudo apt-get install python-opencv
使用感知哈希算法进行图片去重
原理:对每个文件进行遍历所有进行去重,因此图片越多速度越慢,但是可以节省手动操作
感知哈希原理:
1、需要比较的图片都缩放成8*8大小的灰度图
2、获得每个图片每个像素与平均值的比较,得到指纹
3、根据指纹计算汉明距离
5、如果得出的不同的元素小于5则为相同(相似?)的图片
#!/usr/bin/python
# -*- coding: UTF-8 -*-
import cv2
import numpy as np
import os,sys,types
def cmpandremove2(path):
dirs = os.listdir(path)
dirs.sort()
if len(dirs) <= 0:
return
dict={}
for i in dirs:
prepath = path + "/" + i
preimg = cv2.imread(prepath)
if type(preimg) is types.NoneType:
continue
preresize = cv2.resize(preimg, (8,8))
pregray = cv2.cvtColor(preresize, cv2.COLOR_BGR2GRAY)
premean = cv2.mean(pregray)[0]
prearr = np.array(pregray.data)
for j in range(0,len(prearr)):
if prearr[j] >= premean:
prearr[j] = 1
else:
prearr[j] = 0
print "get", prepath
dict[i] = prearr
dictkeys = dict.keys()
dictkeys.sort()
index = 0
while True:
if index >= len(dictkeys):
break
curkey = dictkeys[index]
dellist=[]
print curkey
index2 = index
while True:
if index2 >= len(dictkeys):
break
j = dictkeys[index2]
if curkey == j:
index2 = index2 + 1
continue
arr1 = dict[curkey]
arr2 = dict[j]
diff = 0
for k in range(0,len(arr2)):
if arr1[k] != arr2[k]:
diff = diff + 1
if diff <= 5:
dellist.append(j)
index2 = index2 + 1
if len(dellist) > 0:
for j in dellist:
file = path + "/" + j
print "remove", file
os.remove(file)
dict.pop(j)
dictkeys = dict.keys()
dictkeys.sort()
index = index + 1
def cmpandremove(path):
index = 0
flag = 0
dirs = os.listdir(path)
dirs.sort()
if len(dirs) <= 0:
return 0
while True:
if index >= len(dirs):
break
prepath = path + dirs[index]
print prepath
index2 = 0
preimg = cv2.imread(prepath)
if type(preimg) is types.NoneType:
index = index + 1
continue
preresize = cv2.resize(preimg,(8,8))
pregray = cv2.cvtColor(preresize, cv2.COLOR_BGR2GRAY)
premean = cv2.mean(pregray)[0]
prearr = np.array(pregray.data)
for i in range(0,len(prearr)):
if prearr[i] >= premean:
prearr[i] = 1
else:
prearr[i] = 0
removepath = []
while True:
if index2 >= len(dirs):
break
if index2 != index:
curpath = path + dirs[index2]
#print curpath
curimg = cv2.imread(curpath)
if type(curimg) is types.NoneType:
index2 = index2 + 1
continue
curresize = cv2.resize(curimg, (8,8))
curgray = cv2.cvtColor(curresize, cv2.COLOR_BGR2GRAY)
curmean = cv2.mean(curgray)[0]
curarr = np.array(curgray.data)
for i in range(0,len(curarr)):
if curarr[i] >= curmean:
curarr[i] = 1
else:
curarr[i] = 0
diff = 0
for i in range(0,len(curarr)):
if curarr[i] != prearr[i] :
diff = diff + 1
if diff <= 5:
print 'the same'
removepath.append(curpath)
flag = 1
index2 = index2 + 1
index = index + 1
if len(removepath) > 0:
for file in removepath:
print "remove", file
os.remove(file)
dirs = os.listdir(path)
dirs.sort()
if len(dirs) <= 0:
return 0
#index = 0
return flag
def main(argv):
if len(argv) <= 1:
print "command error"
return -1
if os.path.exists(argv[1]) is False:
return -1
path = argv[1]
'''
while True:
if cmpandremove(path) == 0:
break
'''
cmpandremove(path)
return 0
if __name__ == '__main__':
main(sys.argv)
为了节省操作,遍历所有目录,把想要去重的目录遍历一遍
#!/bin/bash
indir=$1
addcount=0
function intest()
{
for file in $1/*
do
echo $file
if test -d $file
then
~/similar.py $file/
intest $file
fi
done
}
intest $indir
关于怎么在python中使用opencv对目录中的图片去重问题的解答就分享到这里了,希望以上内容可以对大家有一定的帮助,如果你还有很多疑惑没有解开,可以关注天达云行业资讯频道了解更多相关知识。