这篇文章主要介绍了Python数学形态学的示例分析,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。
具体如下:
一 原始随机图像
1、代码
import numpy as np
import matplotlib.pyplot as plt
square = np.zeros((32,32))#全0数组
square[10:20,10:20]=1#把其中一部分设置为1
x, y =(32*np.random.random((2,15))).astype(np.int)#随机位置
square[x,y]=1#把随机位置设置为1
plt.imshow(square)#原始随机图像
plt.show()
2、运行结果
二 开运算
1、代码
import numpy as np
import matplotlib.pyplot as plt
from scipy import ndimage
square = np.zeros((32,32))#全0数组
square[10:20,10:20]=1#把其中一部分设置为1
x, y =(32*np.random.random((2,15))).astype(np.int)#随机位置
square[x,y]=1#把随机位置设置为1
open_square = ndimage.binary_opening(square)#开运算
plt.imshow(open_square)
plt.show()
2、运行结果
三 膨胀运算
1、代码
import numpy as np
import matplotlib.pyplot as plt
from scipy import ndimage
square = np.zeros((32,32))#全0数组
square[10:20,10:20]=1#把其中一部分设置为1
x, y =(32*np.random.random((2,15))).astype(np.int)#随机位置
square[x,y]=1#把随机位置设置为1
eroded_square = ndimage.binary_erosion(square)#膨胀运算
plt.imshow(eroded_square)
plt.show()
2、运行结果
四 闭运算
1、代码
import numpy as np
import matplotlib.pyplot as plt
from scipy import ndimage
square = np.zeros((32,32))#全0数组
square[10:20,10:20]=1#把其中一部分设置为1
x, y =(32*np.random.random((2,15))).astype(np.int)#随机位置
square[x,y]=1#把随机位置设置为1
closed_square = ndimage.binary_closing(square)#闭运算
plt.imshow(closed_square)
plt.show()
2、运行结果
感谢你能够认真阅读完这篇文章,希望小编分享的“Python数学形态学的示例分析”这篇文章对大家有帮助,同时也希望大家多多支持天达云,关注天达云行业资讯频道,更多相关知识等着你来学习!