这期内容当中小编将会给大家带来有关怎么在python中使用dlib库实现一个人脸检测功能,文章内容丰富且以专业的角度为大家分析和叙述,阅读完这篇文章希望大家可以有所收获。
代码
import dlib
import cv2
import os
def resize(img, width=None, height=None, inter=cv2.INTER_AREA):
"""
initialize the dimensions of the input image and obtain
the image size
"""
dim = None
(h, w) = img.shape[:2]
if width is None and height is None:
return img
if width is None:
r = height / float(h)
dim = (int(w * r), height)
else:
r = width / float(w)
dim = (width, int(h * r))
# resize the image
resized = cv2.resize(img, dim, interpolation=inter)
# return the resized image
return resized
# 使用 Dlib 的正面人脸检测器 frontal_face_detector
detector = dlib.get_frontal_face_detector()
# 图片所在路径
imgs_path = 'test/'
filelist = os.listdir(imgs_path)
# 使用 detector 检测器来检测图像中的人脸
for img_path in filelist:
img = cv2.imread(imgs_path + img_path)
img = resize(img, width=512)
faces = detector(img, 1)
print("人脸数 / Faces in all: ", len(faces))
for i, d in enumerate(faces):
w = d.right() - d.left()
h = d.bottom() - d.top()
d_left = int(d.left() - w * 0.25)
d_right = int(d.right() + w * 0.25)
d_top = int(d.top() - w * 0.70)
d_bottom = int(d.bottom() + w * 0.2)
print("第", i + 1, "个人脸的矩形框坐标:",
"left:", d_left, "right:", d_right, "top:", d_top, "bottom:", d_bottom)
cv2.rectangle(img, tuple([d_left, d_top]), tuple([d_right, d_bottom]), (0, 255, 255), 2)
cv2.imshow("img", img)
cv2.waitKey(0)
cv2.imwrite('./result.jpg',img)
上述就是小编为大家分享的怎么在python中使用dlib库实现一个人脸检测功能了,如果刚好有类似的疑惑,不妨参照上述分析进行理解。如果想知道更多相关知识,欢迎关注天达云行业资讯频道。