小编给大家分享一下Tensorflow如何实现分批量读取数据,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!
之前的博客里使用tf读取数据都是每次fetch一条记录,实际上大部分时候需要fetch到一个batch的小批量数据,在tf中这一操作的明显变化就是tensor的rank发生了变化,我目前使用的人脸数据集是灰度图像,因此大小是92*112的,所以最开始fetch拿到的图像数据集经过reshape之后就是一个rank为2的tensor,大小是92*112的(如果考虑通道,也可以reshape为rank为3的,即92*112*1)。
如果加入batch,比如batch大小为5,那么拿到的tensor的rank就变成了3,大小为5*92*112。
下面规则化的写一下读取数据的一般流程,按照官网的实例,一般把读取数据拆分成两个大部分,一个是函数专门负责读取数据和解码数据,一个函数则负责生产batch。
import tensorflow as tf
def read_data(fileNameQue):
reader = tf.TFRecordReader()
key, value = reader.read(fileNameQue)
features = tf.parse_single_example(value, features={'label': tf.FixedLenFeature([], tf.int64),
'img': tf.FixedLenFeature([], tf.string),})
img = tf.decode_raw(features["img"], tf.uint8)
img = tf.reshape(img, [92,112]) # 恢复图像原始大小
label = tf.cast(features["label"], tf.int32)
return img, label
def batch_input(filename, batchSize):
fileNameQue = tf.train.string_input_producer([filename], shuffle=True)
img, label = read_data(fileNameQue) # fetch图像和label
min_after_dequeue = 1000
capacity = min_after_dequeue+3*batchSize
# 预取图像和label并随机打乱,组成batch,此时tensor rank发生了变化,多了一个batch大小的维度
exampleBatch,labelBatch = tf.train.shuffle_batch([img, label],batch_size=batchSize, capacity=capacity,
min_after_dequeue=min_after_dequeue)
return exampleBatch,labelBatch
if __name__ == "__main__":
init = tf.initialize_all_variables()
exampleBatch, labelBatch = batch_input("./data/faceTF.tfrecords", batchSize=10)
with tf.Session() as sess:
sess.run(init)
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
for i in range(100):
example, label = sess.run([exampleBatch, labelBatch])
print(example.shape)
coord.request_stop()
coord.join(threads)
读取数据和解码数据与之前基本相同,针对不同格式数据集使用不同阅读器和解码器即可,后面是产生batch,核心是tf.train.shuffle_batch这个函数,它相当于一个蓄水池的功能,第一个参数代表蓄水池的入水口,也就是逐个读取到的记录,batch_size自然就是batch的大小了,capacity是蓄水池的容量,表示能容纳多少个样本,min_after_dequeue是指出队操作后还可以供随机采样出批量数据的样本池大小,显然,capacity要大于min_after_dequeue,官网推荐:min_after_dequeue + (num_threads + a small safety margin) * batch_size,还有一个参数就是num_threads,表示所用线程数目。
min_after_dequeue这个值越大,随机采样的效果越好,但是消耗的内存也越大。
以上是“Tensorflow如何实现分批量读取数据”这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注天达云行业资讯频道!